Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 10 стр.

UptoLike

Составители: 

Рубрика: 

14
Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒË°}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
|¹Ë¯ÈÒÒ°äÈ¯ÒÈäÒ
|¹¯ËËãËÓÒË

imË äÈ¯Ò©
A
Ò
B
ÓÈÏ©mÈ°« éjktuq Ë°ãÒ ºÓÒ ºÒÓÈ}ºm©²
¯ÈÏä˯ºm Ò Ë°ãÒ Ò² °ººmË°mÒË }ºä¹ºÓËÓ© ¯ÈmÓ© º Ë°
],1[,],1[, njmi
jiji
===
βα

|¹¯ËËãËÓÒË

lÈ¯ÒÈ
C
ÓÈÏ©mÈË°«xyuuvpujzéq|
A
q
B
}ºº¯È«ººÏÓÈ
ÈË°«}È}
CAB=+
Ë°ãÒäÈ¯Ò©
A

B

C
ºÒÓÈ}ºm©²
¯ÈÏä˯ºm Ò
],1[,],1[, njmi
jijiji
==+=
βα
γ
 Ë Ò°ãÈ
,],1[, mi
ji
=
γ
],1[ nj =
«mã«°«°ººmË°mÒäÒ}ºä¹ºÓËÓÈäÒäÈ¯Ò©
C

|¹¯ËËãËÓÒË

lÈ¯ÒÈ
C
ÓÈÏ©mÈË°« wévqoknlntqnu ·qxsj
λ
tjäÈ¯Ò
A
ººÏÓÈÈËäºË}È}
CA
=
λ
Ë°ãÒäÈ¯Ò©
A
Ò
C
ºÒÓÈ}ºm©²
¯ÈÏä˯ºmÒ
],1[,],1[, njmi
jiji
===
λαγ

|äËÒäºäÓºÎÈÓÈÒ°ãºäºÎÓºäÈ¯Òãºº¯ÈÏä˯È
~ÈäËÈÓÒË
mË°mËm°Ë²ÒãÒÓË}ºº¯©²ªãËäËÓºmäÈ¯Ò©mºÏäºÎÓºÒ°¹ºã
ϺmÈÓÒË ¯Ò² äÈËäÈÒË°}Ò² ºË}ºm ã« }ºº¯©² ¹º²º«Òä
º¯ÈϺä º¹¯ËËãËÓ© º¹Ë¯ÈÒÒ °¯ÈmÓËÓÒ« °ãºÎËÓÒ« Ò äÓºÎËÓÒ« ÓÈ
Ò°ãºÓȹ¯Òä˯mË}º¯©ÁÓ}ÒÒÒãÒËÎËäÈ¯Ò©
|¹¯ËËãËÓÒË

ÒéjtxwvtqévkjtqnuäÈ¯Ò©ÓÈÏ©mÈË°«º¹Ë¯ÈÒ«m¯ËÏãÈË}ºº
¯º®º¯ÈÏË°«ÓºmÈ«äÈ¯ÒÈË°¯º}ÈäÒ°ãÎÈ°ºã©Ò°²ºÓº®
ÏȹҰÈÓÓ©Ë°°º²¯ÈÓËÓÒËä¹º¯«}ÈÒ²°ã˺mÈÓÒ«

123 1... ...knn

¯ÈÓ°¹ºÓÒ¯ºmÈÓÒË

1
2
3
1
...
...
k
n
n
èqxytvr
14 Ë }  Ò Ò   } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈ÒË°}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



|¹Ë¯ÈÒÒ°äȈ¯ÒÈäÒ
                 
                 
 |¹¯ËËãËÓÒË            imË äȈ¯Ò© A  Ò B  ÓÈÏ©mÈ ˆ°« éjkt€uq Ë°ãÒ ºÓÒ ºÒÓÈ}ºm©²
                  ¯ÈÏä˯ºm Ò Ë°ãÒ Ò² °ººˆmˈ°ˆm‚ ÒË }ºä¹ºÓËӈ© ¯ÈmÓ© ˆº Ë°ˆ 
                         α i j = β i j , ∀i = [1, m] , ∀j = [1, n] 
                         
 

 |¹¯ËËãËÓÒË            lȈ¯ÒÈ C ÓÈÏ©mÈˈ°«xyuuvpujzéq| A q B  }ºˆº¯È«º­ºÏÓÈ
 
                         Èˈ°«}È} C = A + B                        Ë°ãÒäȈ¯Ò© A  B  C ºÒÓÈ}ºm©²
                         ¯ÈÏä˯ºm Ò γ i j = α i j + β i j , ∀i = [1, m] , ∀j = [1, n]  Ë Ò°ãÈ γ i j , ∀i = [1, m] , 

                         ∀j = [1, n] «mã« ˆ°«°ººˆmˈ°ˆm‚ ÒäÒ}ºä¹ºÓËӈÈäÒäȈ¯Ò© C 
                         
 |¹¯ËËãËÓÒË            lȈ¯ÒÈ           C  ÓÈÏ©mÈˈ°« wévqoknlntqnu ·qxsj λ tj äȈ¯Ò‚                                          A 
 
                          º­ºÏÓÈÈËäºË}È} C = λ A                          Ë°ãÒäȈ¯Ò© A Ò C ºÒÓÈ}ºm©²
                         ¯ÈÏä˯ºmÒ γ i j = λα i j , ∀i = [1, m] , ∀j = [1, n] 
         
         |ˆäˈÒ䈺‚äÓºÎȈ ÓÈÒ°ãºäºÎÓºäȈ¯Ò‚ã ­ºº¯ÈÏä˯È
         
         
 ~ÈäËÈÓÒË   m}ÈË°ˆmËm°Ë²ÒãÒÓË}ºˆº¯©²ªãËäËӈºmäȈ¯Ò©mºÏäºÎÓºÒ°¹ºã 
               ϺmÈÓÒË ¯‚Ò² äȈËäȈÒË°}Ò² º­žË}ˆºm ã« }ºˆº¯©² ¹º²º«Òä
               º­¯ÈϺä º¹¯ËËãËÓ© º¹Ë¯ÈÒÒ °¯ÈmÓËÓÒ« °ãºÎËÓÒ« Ò ‚äÓºÎËÓÒ« ÓÈ
               Ò°ãºÓȹ¯Òä˯mË}ˆº¯©Á‚Ó}ÒÒÒãÒˆËÎËäȈ¯Ò©
         
         
 |¹¯ËËãËÓÒË  ÒéjtxwvtqévkjtqnuäȈ¯Ò©ÓÈÏ©mÈˈ°«º¹Ë¯ÈÒ«m¯Ëς㠈ȈË}ºˆº
        ¯º®º­¯Èςˈ°«ÓºmÈ«äȈ¯ÒÈË°ˆ¯º}ÈäÒ°ã‚ÎȈ°ˆºã­©Ò°²ºÓº®
               ÏȹҰÈÓÓ©Ë°°º²¯ÈÓËÓÒË乺¯«}ÈÒ²°ã˺mÈÓÒ«
         
         
                                                                                                                         1
                                                                                                                         2
                                                                                                                         3
                                                                                                                        ...
    1 2 3 ... k ... n − 1 n                          ˆ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒË                                             
                                                                                                                         k
                                                                                                                        ...
                                                                                                                       n −1
                                                                                                                         n
            
                                                             èqxytvr