ВУЗ:
Составители:
Рубрика:
где
c
cs
lI
lI
n =
– для однопролётных рам;
()
1
21
+
+
=
k
nnk
n
– для многопролётных рам, здесь
c
cs
Il
lI
n
1
1
1
= ,
c
cs
Il
lI
n
2
2
2
=
(
cc
lI , – соот-
ветственно момент инерции и длина проверяемой колонны;
2211
,,, lIlI
ss
– соответственно моменты инерции и длины риге-
лей, примыкающих к этой колонне.
13. Коэффициент расчётной длины
Схема
закрепления
колонны и вид
нагрузки
µ
1,0 0,7 0,5 2,0 1,0 2,0 0,725 1,12
Расчётная длина колонны из плоскости рамы. Расчётные длины колонн в направлении вдоль здания (из плоскости
рамы), как правило, принимают равными расстояниям между закреплёнными от смещения из плоскости рамы точками
(
1=µ
y
). Расчётные длины допускается определять на основе расчётной схемы, учитывающей фактические условия за-
крепления концов колонн:
yyyef
ll
µ
=
,
,
где
y
l
– длина участка колонны между точками закрепления;
y
µ
– коэффициент расчётной длины, зависящий от условий
закрепления концов стержня и вида нагрузки (табл. 13).
5.3. ПРОЕКТИРОВАНИЕ СПЛОШНЫХ КОЛОНН
Внецентренно сжатые и сжато-изогнутые сплошные колонны рассчитывают на прочность и устойчивость.
Расчёт стержня сплошной колонны на устойчивость в плоскости действия момента, совпадающей с плоскостью
симметрии, выполняется по формуле:
cy
e
R
A
N
γ≤
ϕ
,
где A – площадь сечения колонны; N – значение продольной силы при наиболее неблагоприятном сочетании нагрузок;
e
ϕ – определяется по табл. П11 и зависит от условной гибкости ER
yxx
/λ=λ и приведенного относительного эксцен-
триситета
xef
mm η= , здесь
xxefx
il /
,
=
λ – гибкость стержня в плоскости действия момента (в плоскости поперечной
рамы); η – коэффициент влияния формы сечения, определяемый по табл. П10;
c
x
W
eA
m =
– относительный эксцентриситет
(
NMe /=
–эксцентриситет; W
c
– момент сопротивления сечения для наиболее сжатого волокна).
Расчётные значения продольной силы N и изгибающего момента М в элементе следует принимать для одного и того
же сочетания нагрузок из расчёта рамы. При этом значение М следует принимать равным наибольшему моменту в преде-
лах длины колонны.
Расчёт стержня колонны на устойчивость из плоскости действия момента (из плоскости рамы) в том случае, когда
плоскость действия момента совпадает с плоскостью симметрии сечения, в которой жёсткость наибольшая (
yx
II > ), вы-
полняется по формуле
cy
R
Ac
N
γ
y
≤
ϕ
,
где с – коэффициент, учитывающий влияние изгибающего момента на устойчивость стержня из плоскости рамы;
y
ϕ
–
коэффициент устойчивости при центральном сжатии, определяемый по табл. П8 в зависимости от гибкости стержня из
плоскости действия изгибающего момента
yyefy
il /
,
=λ
.
Коэффициент с следует определять:
– при значениях относительного эксцентриситета m
x
≤ 5 по формуле
,
α1
β
x
m
c
+
=
где α и β – коэффициенты, принимаемые по табл. 14;
– при значениях относительного эксцентриситета m
x
≥ 10 по формуле
,
/1
1
y bx
m
c
ϕϕ+
=
где ϕ
b
– коэффициент, определяемый по [2, прил. 7
*
] как для балки с двумя и более закреплениями сжатого пояса; для
замкнутых сечений ϕ
b
= 1,0;
Страницы
- « первая
- ‹ предыдущая
- …
- 49
- 50
- 51
- 52
- 53
- …
- следующая ›
- последняя »