Надежность функционирования систем электроснабжения. Волков Н.Г. - 131 стр.

UptoLike

Составители: 

131
Для большей части задач, связанных с технико-экономической
оценкой надежности систем электроснабжения, нет необходимости рас-
сматривать показатели надежности на коротких интервалах времени.
Поэтому можно не учитывать начальные состояния элементов. К тому
же применение для этих целей методов теории массового обслуживания
(марковских процессов) встречает большие затруднения вычислитель-
ного характера, если
система имеет большое число восстанавливаемых
элементов и произвольную схему коммутации. Поэтому при расчетах
показателей надежности в интервалах времени, равных сезону, году,
можно использовать более простые
вероятностные модели, основан-
ные на средних значениях вероятностей состояния элементов
. При
указанных интервалах времени алгоритмы расчета основных показате-
лей надежности (коэффициента вынужденного простоя, параметра по-
тока отказов и среднего времени восстановления), изложенные
в разделе 4.1, обеспечивают достаточную точность, если выполняются
следующие условия:
1)
отказы элементов системы независимы;
2)
времена безотказной работы и времена восстановления опи-
сываются экспоненциальными законами распределения;
3)
поток отказов элементов системы ординарен;
4)
время безотказной работы значительно больше времени вос-
становления для всех элементов.
Отметим, что для обоснования возможности применения алго-
ритмов расчетов по средним значениям показателей надежности боль-
шее значение имеют последние два условия, которые обычно выполня-
ются практически для всех элементов электрических систем. Даже если
законы распределения времени безотказной работы и восстановления
значительно отличаются от экспоненциальных, погрешность расчетов
по средним значениям незначительна [8].
Рассмотрим некоторые положения применения метода расчета по
средним вероятностям состояния элементов с последовательным и па-
раллельным соединением их.
4.2.2. Вероятности отказового и безотказового состояния схем
с последовательным соединением элементов
Если расчетная схема по надежности состоит из n последователь-
но соединенных элементов, то она будет в рабочем состоянии тогда, ко-
гда все n элементов будут в рабочем состоянии. Сложное событиера-
бота всех элементов схемы получается в результате совмещения собы-
тийработы каждого элемента. Применяя теорему умножения вероят-