ВУЗ:
Составители:
Рубрика:
43
ну сохранения заряда
12
12
2E.
11
qqqC
-==- Отсюда
11
10236
E;E.
121121
qCqqqC
=D=-=
6. Сила Ампера, действующая на каждую из сторон квадрата :
1
2
A
FBIa= .
Из равенства нулю алгебраической суммы моментов всех сил Ампера и силы
тяжести получаем:
2
Mg
BIa
=
. Отсюда
.
2
Mg
I
Ba
=
7.
()
10,4.
hFntg
a
=-=
м
Задания заключительного (межвузовского) этапа
1. Скорость спортсмена будет максимальна тогда, когда сумма всех сил , дей-
ствующих на него , будет равна нулю. Отсюда
2
max
sincos.
mgmgVamab-=
Тогда
()
max
sincos
.
mg
V
ama
b
-
=
2. При таком угле наклона резиновые гусеницы движутся по плоскости без про-
скальзывания . Учтем, что длина гусениц много больше высоты модели, и будем
считать , что при движении модели со скоростью
v
нижняя половина гусениц
неподвижна, а верхняя – имеет скорость
2
v
. Тогда кинетическая энергия моде -
ли -
()
2
2
2
2
0,40,20,9
22
k
vv
Emmmv
=+=
. ( m – масса всей модели, 0,4 m –
масса половины гусениц , 0,2 m – масса модели без гусениц ). За малый проме -
жуток времени
t
D
модель опустится на
sin
hvt
a
D=D
и ее кинетическая
энергия увеличится на величину
sin.
k
Emgvt
a
D=D Если за это время ско-
рость модели увеличилась на
v
D
, то
()
2
2
0,90,91,8.
k
Emvvmvmvv
D=+D- » D
Из этих соотношений находим
ускорение модели
2
sin
2,7/.
1,8
vg
ac
t
a
D
== »
D
м
3. Скорость центральной шайбы будет максимальной в тот момент, когда все
три шайбы будут находиться на одной прямой. Поскольку на шайбы действуют
только внутренние силы , скорость центра масс системы будет оставаться рав -
ной нулю:
20
mVmv
-=
, или
2
Vv
=
. Здесь V – скорость центральной шай-
бы . Закон сохранения полной энергии для момента времени, когда все три шай-
бы находятся на одной прямой, принимает вид :
22
2
35
3
2
qq
kmvk
bb
=+;
(k=1/4πε
o
). Отсюда максимальная скорость центральной шайбы
2
3
k
Vq
mb
=
.
4. Параллельный главной оптической оси пучок света проходит линзу, затем
отражается от зеркального покрытия и снова проходит линзу. С помощью фор -
43 12 ну сохр ане ния зар яда q1 - q2 = 2q = - C E. О тсюда 11 102 36 q1 = C E; D q = q1 - q = C E. 121 121 1 6. С ила А м пе р а, де йств ующая на каждую из стор он кв адр ата: FA = BIa . 2 И з р ав е нства н улю ал ге бр аиче ской сум м ы м ом е н тов в се х сил А м пе р а исилы Mg Mg тяже стипол учае м : = BIa . О тсюда I = . 2 2Ba 7. h = F (n - 1 )tga = 0, 4 м . Задания зак лю чите льного(м е ж вузовск ого) этап а 1. С кор ость спор тсм е на буде тм аксим альна тогда, когда сум м а в се х сил, де й- ствующих на не го, буде тр ав н а н ул ю. О тсюда mg sin a - mmg cos a = bV max 2 . mg (sin a - mcos a ) Т огда V max = . b 2. Пр итаком угл е накл он а р е зинов ы е гусе ницы дв ижутся по пл оскостибе з пр о- скал ьзы в ания. У чтем , что длина гусе ниц м ного бол ьше в ы соты м оде л и, ибуде м считать, что пр идв иже ниим оде лисо скор остью v нижняя полов ина гусе ниц не подв ижна, а в е р хняя –им е е тскор ость 2v . Т огда кине тиче ская эне р гия м оде - (2v )2 v2 ли- E k = 0, 4m + 0, 2m = 0, 9mv 2 . ( m – м асса в се й м оде ли, 0,4 m – 2 2 м асса полов ины гусе ниц, 0,2 m – м асса м оде ли бе з гусе ниц). З а м алы й пр ом е - жуток в р е м е ни D t м оде льопустится на D h = v D t sin a ие е кине тиче ская эне р гия ув е личится на в е л ичин у D E k = mgv D t sin a . Е слиза это в р е м я ско- р остьм оде лиув е л ичиласьна D v , то D E k = 0, 9m (v + D v )2 - 0, 9mv 2 » 1, 8mv D v. И з этих соотноше ний находим Dv g sin a ускор е ние м оде ли a = = » 2, 7 м / c 2. Dt 1, 8 3. С кор ость це н тр альной шайбы буде тм аксим альной в тотм ом е нт, когда в се тр и шайбы будутнаходиться на одной пр ям ой. Поскол ькун а шайбы де йствуют тол ько в н утр е нние сил ы , скор ость це нтр а м асс систем ы буде тостав аться р ав - ной н ул ю: mV - 2mv = 0 , ил иV = 2v . З де сь V – скор ость це нтр ал ьной шай- бы . З акон сохр ане ния полной эне р гиидля м ом е нта в р е м е ни, когда в се тр ишай- 3q 2 5q 2 бы находятся на одной пр ям ой, пр иним ае т в ид: k 2 = 3mv + k ; b 2b 2k (k=1/4πεo). О тсюда м аксим ал ьная скор остьце нтр альной шайбы V = q . 3mb 4. П ар алл е льны й глав н ой оптиче ской осипучок св е та пр оходитлин зу, затем отр ажае тся отзе р кал ьного покр ы тия иснов а пр оходитлин зу. С пом ощью ф ор -
Страницы
- « первая
- ‹ предыдущая
- …
- 41
- 42
- 43
- 44
- 45
- …
- следующая ›
- последняя »