ВУЗ:
Составители:
Рубрика:
lim
n→∞
x
n
= a, ∀ n, x
n
> b (x
n
< b).
a) a > b, b) a ≥ b? ( c) a < b, d) a ≤ b ?)
a) lim
n→∞
3n
2
2−n
2
; b) lim
n→∞
[(n + 1)
k
− n
k
] , 0 < k < 1;
c) lim
n→∞
n [
q
n(n − 2) −
√
n
2
− 3 ] ;
d) lim
n→∞
3
n
−2
n
3
n+1
+2
n
; e) lim
n→∞
1+a+a
2
+...+a
n
1+b+b
2
+...+b
n
, |a| < 1, |b| < 1;
f) lim
n→∞
(
√
2 ·
4
√
2 · ... ·
2
n
√
2) ; g) lim
n→∞
3
√
n
2
+2−5n
2
n−
√
n
4
−n+1
.
a)
∞
∞
.
n
2
, lim
n→∞
3n
2
2−n
2
=
lim
n→∞
3
2
n
2
−1
=
lim
n→∞
3
lim
n→∞
(
2
n
2
−1)
= −3.
b) (∞−∞).
n
k
0 < (n + 1)
k
−n
k
= n
k
[ (1 +
1
n
)
k
−
−1] < n
k
[(1 +
1
n
) − 1] =
1
n
1−k
.
1
n
1−k
→ 0,
(n + 1)
k
− n
k
→ 0.
c)
lim
n→∞
n[
q
n(n − 2) −
√
n
2
− 3] =
= lim
n→∞
n [
√
n(n−2)−
√
n
2
−3] [
√
n(n−2)+
√
n
2
−3]
[
√
n(n−2)+
√
n
2
−3]
= lim
n→∞
n (n
2
−2n−n
2
+3)
[
√
n(n−2)+
√
n
2
−3]
=
= lim
n→∞
n(3−2n)
n[
√
1−
2
n
+
q
1−
3
n
2
]
= lim
n→∞
3−2n
√
1−
2
n
+
q
1−
3
n
2
= ∞.
4. Ïóñòü lim xn = a, ïðè÷åì äëÿ ∀ n, xn > b (xn < b).
n→∞
Ñëåäóåò ëè îòñþäà, ÷òî a) a > b, b) a ≥ b? ( c) a < b, d) a ≤ b ?)
Ïðèâåäèòå ïðèìåðû.
Â. Ïðèìåðû ðåøåíèÿ çàäà÷.
Ïðèìåð 31. Âû÷èñëèòü ïðåäåëû:
3n2
a) lim b) lim [(n + 1)k − nk ] , 0 < k < 1;
2;
n→∞ 2−n n→∞
q √
c) lim n [ n(n − 2) − n2 − 3 ] ;
n→∞
3n −2n 2 n
d) lim n+1 +2n; e) lim 1+a+a 2
+...+a
n , |a| < 1, |b| < 1;
n→∞ 3 n→∞ 1+b+b +...+b
√ √ √
n
√3 2 2
lim n−n√+2−5n
lim ( 2 · 4 2 · ... · 2 2) ; g) n→∞
f ) n→∞ 4
n −n+1
.
Ðåøåíèÿ.
a) Ýòîò ïðåäåë ÿâëÿåòñÿ íåîïðåäåëåííîñòüþ òèïà ∞ ∞
. ×èñ-
3n2
2
ëèòåëü è çíàìåíàòåëü ïîäåëèì íà n , òîãäà ïîëó÷èì lim 2−n 2 =
n→∞
lim 3
lim 2 3 = n→∞
lim ( 22 −1)
= −3.
n→∞ n2 −1
n→∞ n
b) Ìû èìååì çäåñü íåîïðåäåëåííîñòü âèäà (∞ − ∞). Ïðåîá-
ðàçóåì, âûíîñÿ nk çà ñêîáêè: 0 < (n + 1)k − nk = nk [ (1 + n1 )k −
−1] < nk [(1 + n1 ) − 1] = n1−k
1 1
. Òàê êàê n1−k → 0, òî è ïîäàâíî
(n + 1)k − nk → 0.
c) Èçáàâèìñÿ îò èððàöèîíàëüíîñòè â ÷èñëèòåëå, óìíîæàÿ íà
ñîïðÿæåííîå âûðàæåíèå:
q √
lim
n→∞
n[ n(n − 2) − n2 − 3] =
√ √ √ √
n [ n(n−2)− n2 −3] [ n(n−2)+ n2 −3] n (n2 −2n−n2 +3)
= n→∞
lim √ √
2
lim √
= n→∞ √
2
=
[ n(n−2)+ n −3] [ n(n−2)+ n −3]
n(3−2n) 3−2n
= lim √ q = lim √ q = ∞.
n→∞ n[ 2
1− n + 1− 3
] n→∞ 2
1− n + 1− 3
n2 n2
45
Страницы
- « первая
- ‹ предыдущая
- …
- 43
- 44
- 45
- 46
- 47
- …
- следующая ›
- последняя »
