ВУЗ:
Составители:
Рубрика:
lim
n→∞
x
n
= a, ∀ n, x
n
> b (x
n
< b).
a) a > b, b) a ≥ b? ( c) a < b, d) a ≤ b ?)
a) lim
n→∞
3n
2
2−n
2
; b) lim
n→∞
[(n + 1)
k
− n
k
] , 0 < k < 1;
c) lim
n→∞
n [
q
n(n − 2) −
√
n
2
− 3 ] ;
d) lim
n→∞
3
n
−2
n
3
n+1
+2
n
; e) lim
n→∞
1+a+a
2
+...+a
n
1+b+b
2
+...+b
n
, |a| < 1, |b| < 1;
f) lim
n→∞
(
√
2 ·
4
√
2 · ... ·
2
n
√
2) ; g) lim
n→∞
3
√
n
2
+2−5n
2
n−
√
n
4
−n+1
.
a)
∞
∞
.
n
2
, lim
n→∞
3n
2
2−n
2
=
lim
n→∞
3
2
n
2
−1
=
lim
n→∞
3
lim
n→∞
(
2
n
2
−1)
= −3.
b) (∞−∞).
n
k
0 < (n + 1)
k
−n
k
= n
k
[ (1 +
1
n
)
k
−
−1] < n
k
[(1 +
1
n
) − 1] =
1
n
1−k
.
1
n
1−k
→ 0,
(n + 1)
k
− n
k
→ 0.
c)
lim
n→∞
n[
q
n(n − 2) −
√
n
2
− 3] =
= lim
n→∞
n [
√
n(n−2)−
√
n
2
−3] [
√
n(n−2)+
√
n
2
−3]
[
√
n(n−2)+
√
n
2
−3]
= lim
n→∞
n (n
2
−2n−n
2
+3)
[
√
n(n−2)+
√
n
2
−3]
=
= lim
n→∞
n(3−2n)
n[
√
1−
2
n
+
q
1−
3
n
2
]
= lim
n→∞
3−2n
√
1−
2
n
+
q
1−
3
n
2
= ∞.
4. Ïóñòü lim xn = a, ïðè÷åì äëÿ ∀ n, xn > b (xn < b). n→∞ Ñëåäóåò ëè îòñþäà, ÷òî a) a > b, b) a ≥ b? ( c) a < b, d) a ≤ b ?) Ïðèâåäèòå ïðèìåðû. Â. Ïðèìåðû ðåøåíèÿ çàäà÷. Ïðèìåð 31. Âû÷èñëèòü ïðåäåëû: 3n2 a) lim b) lim [(n + 1)k − nk ] , 0 < k < 1; 2; n→∞ 2−n n→∞ q √ c) lim n [ n(n − 2) − n2 − 3 ] ; n→∞ 3n −2n 2 n d) lim n+1 +2n; e) lim 1+a+a 2 +...+a n , |a| < 1, |b| < 1; n→∞ 3 n→∞ 1+b+b +...+b √ √ √ n √3 2 2 lim n−n√+2−5n lim ( 2 · 4 2 · ... · 2 2) ; g) n→∞ f ) n→∞ 4 n −n+1 . Ðåøåíèÿ. a) Ýòîò ïðåäåë ÿâëÿåòñÿ íåîïðåäåëåííîñòüþ òèïà ∞ ∞ . ×èñ- 3n2 2 ëèòåëü è çíàìåíàòåëü ïîäåëèì íà n , òîãäà ïîëó÷èì lim 2−n 2 = n→∞ lim 3 lim 2 3 = n→∞ lim ( 22 −1) = −3. n→∞ n2 −1 n→∞ n b) Ìû èìååì çäåñü íåîïðåäåëåííîñòü âèäà (∞ − ∞). Ïðåîá- ðàçóåì, âûíîñÿ nk çà ñêîáêè: 0 < (n + 1)k − nk = nk [ (1 + n1 )k − −1] < nk [(1 + n1 ) − 1] = n1−k 1 1 . Òàê êàê n1−k → 0, òî è ïîäàâíî (n + 1)k − nk → 0. c) Èçáàâèìñÿ îò èððàöèîíàëüíîñòè â ÷èñëèòåëå, óìíîæàÿ íà ñîïðÿæåííîå âûðàæåíèå: q √ lim n→∞ n[ n(n − 2) − n2 − 3] = √ √ √ √ n [ n(n−2)− n2 −3] [ n(n−2)+ n2 −3] n (n2 −2n−n2 +3) = n→∞ lim √ √ 2 lim √ = n→∞ √ 2 = [ n(n−2)+ n −3] [ n(n−2)+ n −3] n(3−2n) 3−2n = lim √ q = lim √ q = ∞. n→∞ n[ 2 1− n + 1− 3 ] n→∞ 2 1− n + 1− 3 n2 n2 45
Страницы
- « первая
- ‹ предыдущая
- …
- 43
- 44
- 45
- 46
- 47
- …
- следующая ›
- последняя »