Введение в математический анализ в вопросах и задачах. Анчиков А.М - 43 стр.

UptoLike

{
1
/
x
n
}, x
n
=
2
n
/
n!
6= 0
lim
n→∞
1
/
x
n
= .
{x
n
}
a) x
n
=
3n1
5n+4
; b) x
n
=
2
13n
; c) x
n
=
n
n
2
+n
;
d) x
n
= 2n
4n
2
+ 3.
{x
n
}
a) x
n
=
13n
3+2n
; b) x
n
=
17
2n+7
; c) x
n
=
2n + 3
2n;
d) x
n
=
n
2
+ 2n + 2 n.
{x
n
} a) x
1
=
= a, x
n+1
= 2x
n
1. a {x
n
}
a) x
1
= b, x
n+1
= 3x
n
2. b
{x
n
}
{x
n
}, x
1
=
2; x
2
=
q
2 +
2; x
3
=
r
2 +
q
2 +
2;
... ... x
n
=
r
2 +
q
2 + ... +
2 n [ 2 ]
{x
n
},
x
n
= (1 +
1
2
) · (1 +
1
4
) · ... · (1 +
1
2
n
).
{x
n
},
x
n
= p
0
+
p
1
10
+ ... +
p
n
10
n
; (n = 1, 2, ...) p
i
(i = 0, 1, 2, ...)
9,
p
1
.
                                            n
ïîñëåäîâàòåëüíîñòü {1/xn },           xn = 2 /n! 6= 0 áóäåò á.á., ò.å.
lim 1/xn = ∞.
n→∞

  Ã. Çàäà÷è è óïðàæíåíèÿ äëÿ ñàìîñòîÿòåëüíîé ðàáî-
òû.
     1. Äîêàçàòü, ÷òî ïîñëåäîâàòåëüíîñòü {xn } ìîíîòîííî âîçðàñ-
òàþùàÿ è îãðàíè÷åííàÿ:
      a) xn = 3n−1
               5n+4
                    ;             b) xn = 1−3n   2
                                                   ;         c) xn = √nn2 +n ;
                 √
d) xn = 2n − 4n2 + 3.
     2. Äîêàçàòü, ÷òî ïîñëåäîâàòåëüíîñòü {xn } ìîíîòîííî óáû-
âàþùàÿ è îãðàíè÷åííàÿ:
                                                              √           √
      a) xn = 1−3n
               3+2n
                    ;       b)   x n =    17
                                        2n+7
                                               ;     c) x n =   2n + 3 −     2n;
          √
d) xn = n2 + 2n + 2 − n.
     3. Ïîñëåäîâàòåëüíîñòü {xn } çàäàíà ðåêóððåíòíî: a) x1 =
= a, xn+1 = 2xn − 1. Ïðè êàêèõ a ïîñëåäîâàòåëüíîñòü {xn }
ÿâëÿåòñÿ ìîíîòîííî âîçðàñòàþùåé?
     á) a) x1 = b, xn+1 = 3xn − 2. Ïðè êàêèõ b ïîñëåäîâàòåëü-
íîñòü {xn } ÿâëÿåòñÿ ìîíîòîííî óáûâàþùåé?
     4. Äîêàæèòå ñõîäèìîñòü è âû÷èñëèòå ïðåäåë ïîñëåäîâàòåëü-    r
                                √              q      √                q       √
íîñòè {xn }, åñëè x1 = 2; x2 = 2 + 2; x3 = 2 + 2 + 2;
              r       q               √
... ... xn = 2 + 2 + ... + 2 − (âñåãî n êîðíåé).                         [2]
     5. Äîêàæèòå ñõîäèìîñòü ïîñëåäîâàòåëüíîñòè {xn }, åñëè
xn = (1 + 21 ) · (1 + 14 ) · ... · (1 + 21n ).
     6. Äîêàæèòå ñõîäèìîñòü ïîñëåäîâàòåëüíîñòè {xn }, åñëè
            p1             pn
xn = p0 + 10    + ... + 10   n ; (n = 1, 2, ...)     ãäå pi (i = 0, 1, 2, ...) −
öåëûå íåîòðèöàòåëüíûå ÷èñëà, íå ïðåâûøàþùèå 9, íà÷èíàÿ ñ
p1 .


                                      43