ВУЗ:
Составители:
Рубрика:
d) lim
n→∞
3
n
−2
n
3
n+1
+2
n
= lim
n→∞
1−(2/3)
n
3+(2/3)
n
=
lim
n→∞
[1−(2/3)
n
]
lim
n→∞
[3+(2/3)
n
]
=
1
3
.
e) lim
n→∞
1+a+a
2
+...+a
n
1+b+b
2
+...+b
n
= lim
n→∞
(
1−a
n+1
1−a
·
1−b
1−b
n+1
) =
=
1−b
1−a
· lim
n→∞
1−a
n+1
1−b
n+1
=
1−b
1−a
·
lim
n→∞
(1−a
n+1
)
lim
n→∞
(1−b
n+1
)
=
1−b
1−a
;
f) lim
n→∞
(
√
2 ·
4
√
2 · ... ·
2
n
√
2) = lim
n→∞
2
1/2+1
/
2
2
+...+1/2
n
=
= lim
n→∞
2
1
2
·
1−(1/2)
n
1−(1/2)
= lim
n→∞
2
1−(1/2)
n
= 2 lim
n→∞
2
−1/2
n
= 2;
g) lim
n→∞
3
√
n
2
+2−5n
2
n−
√
n
4
−n+1
= lim
n→∞
(
3
√
n
2
+2
/
n
2
)−5
(1/n−
q
1−1
/
n
3
+1
/
n
4
)
=
= lim
n→∞
3
q
1
/
n
4
+2
/
n
6
−5
(1/n−
q
1−1
/
n
3
+1
/
n
4
)
= 5.
lim
n→∞
x
n
, x
n
=
3
√
n + 1 −
3
√
n − 1.
a
m
− b
m
= (a − b)(a
m−1
+ a
m−2
b + a
m−3
b
3
+ ... + ab
m−2
+ b
m−1
).
a =
3
√
n + 1, b =
3
√
n − 1, m = 3. lim
n→∞
(
3
√
n + 1−
−
3
√
n − 1) = lim
n→∞
(
3
√
n+1−
3
√
n−1) · (
3
√
(n+1)
2
+
3
√
n+1 ·
3
√
n−1 +
3
√
(n−1)
2
)
(
3
√
(n+1)
2
+
3
√
n+1
3
√
n−1 +
3
√
(n−1)
2
)
=
= lim
n→∞
n+1−n+1
(
3
√
(n+1)
2
+
3
√
n
2
−1 +
3
√
(n−1)
2
)
= 0,
∞.
{x
n
} x
1
= 4; x
n+1
=
√
6 + x
n
.
n n n lim [1−(2/3)n ]
d) n→∞ 3 −2
lim 3n+1 +2n
lim 1−(2/3)
= n→∞ 3+(2/3)n
= n→∞
lim [3+(2/3)n ]
= 13 .
n→∞
2 n n+1
e) lim 1+a+a2 +...+an = lim ( 1−a · 1−b
1−bn+1
) =
n→∞ 1+b+b +...+b n→∞ 1−a
n+1
lim (1−an+1 )
1−b
= 1−a
lim 1−a
· n→∞ 1−bn+1
= 1−b
1−a
· n→∞
lim (1−bn+1 )
= 1−b
1−a
;
n→∞
√ √ √
f ) lim ( 2 · 4 2 · ... · 2 2) = lim 21/2+1/2 +...+1/2 =
n 2 n
n→∞ n→∞
n
1 1−(1/2)
· n n
= lim 2 2 1−(1/2) = lim 21−(1/2) = 2 lim 2−1/2 = 2;
n→∞ n→∞ n→∞
√ √
3 2 2 ( 3 n2 +2/n2 )−5
g) lim n−n√+2−5n
n4 −n+1
= lim q =
n→∞ n→∞ (1/n− 1−1/n3 +1/n4 )
q
3
1/n4 +2/n6 −5
= lim q = 5.
n→∞ (1/n− 1−1/n3 +1/n4 )
√ √
Ïðèìåð 32. Íàéòè n→∞
lim xn , åñëè xn = 3
n+1− 3
n − 1.
Ðåøåíèå. Ïðè âû÷èñëåíèè áóäåì ïîëüçîâàòüñÿ ôîðìóëîé
am − bm = (a − b)(am−1 + am−2 b + am−3 b3 + ... + abm−2 + bm−1 ).
√ √ √
 íàøåì ñëó÷àå a = 3 n + 1, b = 3 n − 1, m = 3. lim ( 3 n + 1−
n→∞
√ √ √ √ √ √ √
( 3 n+1− 3 n−1) · ( 3 (n+1)2 + 3 n+1 · 3 n−1 + 3 (n−1)2 )
− 3 n − 1) = lim √
3 √
3 √
3
√
3
=
n→∞ 2( (n+1) + n+12 n−1 + (n−1) )
lim √
= n→∞ n+1−n+1
√ √ = 0, òàê êàê çíàìåíàòåëü ñòðå-
3
( (n+1)2 + 3 n2 −1 + 3
(n−1)2 )
ìèòñÿ ê ∞.
Ïðèìåð 33. Íàïèñàòü îáùèé ÷ëåí, äîêàçàòü ñõîäèìîñòü ïî-
ñëåäîâàòåëüíîñòè {xn } è íàéòè å¼ ïðåäåë, åñëè x1 = 4; xn+1 =
√
6 + xn .
46
Страницы
- « первая
- ‹ предыдущая
- …
- 44
- 45
- 46
- 47
- 48
- …
- следующая ›
- последняя »
