Лекции по функциональному анализу для начинающих специалистов по математической физике. Арсеньев А.А. - 273 стр.

UptoLike

Составители: 

Рубрика: 

[A [A , B]] = 0,
exp(A)B exp(A) = B + [A , B],
exp(A)φ(B) = φ(B + [A , B]) exp(A).
f(t) = exp(tA)B exp(tA).
t
df
dt
= exp(tA)(AB BA) exp(tA) = [A , B] exp(tA) exp(tA) = [A , B].
f(t) = B + t[A , B].
exp(tA)φ(B) exp(tA) = φ(exp(tA)B exp(tA)) = φ(B + t[A , B]),
[A , B] = C , [A , C] = [B , C] = 0,
exp(A) · exp(B) = exp(
1
2
C + A + B).
f(t) = exp(tA) · exp(tB) · exp(t(A + B)).
df
dt
= exp(tA)A exp(tB) · exp(t(A + B)) + exp(tA) · exp(tB)B exp(t(A + B))
exp(tA) · exp(tB)(A + B) exp(t(A + B)) =
exp(tA)(A exp(tB) exp(tB)A) exp(t(A + B)) = tCf (t).
f(t) = exp(
1
2
t
2
C).
Ëåììà 3.10.19. Åñëè
                  [A [A , B]] = 0,

òî

                   exp(A)B exp(−A) = B + [A , B],
                   exp(A)φ(B) = φ(B + [A , B]) exp(A).
     Äîêàçàòåëüñòâî. Ïîëîæèì
                       f (t) = exp(tA)B exp(−tA).
Äèôôèðåíöèðóÿ ïî t, ïîëó÷àåì:
 df
    = exp(tA)(AB − BA) exp(−tA) = [A , B] exp(tA) exp(−tA) = [A , B].
 dt
                           f (t) = B + t[A , B].
Îòñþäà ñëåäóåò ïåðâàÿ èç äîêàçûâàåìûõ ôîðìóë, èç êîòîðîé âûòåêàåò
(ñì. ôîðìóëó (3.150) íà ñòð. 202), ÷òî
     exp(tA)φ(B) exp(−tA) = φ(exp(tA)B exp(−tA)) = φ(B + t[A , B]),
÷òî ýêâèâàëåíòíî âòîðîé ôîðìóëå.
Ëåììà 3.10.20. Åñëè
                    [A , B] = C , [A , C] = [B , C] = 0,
òî
                                        1
                  exp(A) · exp(B) = exp( C + A + B).
                                        2
     Äîêàçàòåëüñòâî. Ïîëîæèì
                f (t) = exp(tA) · exp(tB) · exp(−t(A + B)).
Òîãäà
df
   = exp(tA)A exp(tB) · exp(−t(A + B)) + exp(tA) · exp(tB)B exp(−t(A + B))−
dt
exp(tA) · exp(tB)(A + B) exp(−t(A + B)) =
exp(tA)(A exp(tB) − exp(tB)A) exp(−t(A + B)) = tCf (t).
Îòñþäà ñëåäóåò, ÷òî
                                        1
                            f (t) = exp( t2 C).
                                        2
Ëåììà äîêàçàíà.

                                     261