ВУЗ:
Составители:
Рубрика:
f ∈ C
n , α
0
(R
d
)
∀(m , |m| ≤ n) : lim
|x|→∞
|D
m
x
f(x)| = 0.
f ∈ C
n , α
0
(R
d
)
∀( > 0) , ∃f
∈ S(R
d
) : kf − f
| C
n , α
0
(R
d
)k < ,
∀(m , |m| ≤ n , > 0) : lim sup
|x|→∞
|D
m
x
f(x)| ≤ .
f ∈ H
d/2+n+α
(R
d
) , 0 < α < 1,
f(x) ∈ C
n , α
0
(R
d
),
f C(d , α)
∀(f ∈ H
d/2+n+α
(R
d
)) : kf | C
n , α
0
(R
d
)k ≤ C(d , α)kf | H
d/2+n+α
(R
d
)k.
∀(m , |m| ≤ n , f ∈ S(R
d
)) : |D
m
x
f(x + y) − D
m
x
f(x)| =
(2π)
−d
Z
ξ
m
b
f(ξ)[exp(i(ξ , y)) −1] exp(i(ξ , x))dξ
≤
const.
Z
(1 + ξ
2
)
n/2
|
b
f(ξ)||exp(i(ξ , y)) − 1|dξ ≤
const.
Z
(1 + ξ
2
)
n+d/2+α
|
b
f(ξ)|
2
dξ
1/2
×
Z
|exp(i(ξ , y)) − 1|
2
(1 + ξ
2
)
−(d/2+α)
dξ
1/2
≤
const.kf | H
d/2+n+α
(R
d
)k
Z
|exp(i(ξ , y)) − 1|
2
|ξ|
−(d+2α)
dξ
1/2
=
C(d , α)kf | H
d/2+n+α
(R
d
)k|y|
α
.
Îòìåòèì, ÷òî åñëè f ∈ C0n , α (Rd ), òî
∀(m , |m| ≤ n) : lim |Dxm f (x)| = 0.
|x|→∞
Äåéñòâèòåëüíî, åñëè f ∈ C0n , α (Rd ), òî
∀( > 0) , ∃f ∈ S(Rd ) : kf − f | C0n , α (Rd )k < ,
ïîýòîìó
∀(m , |m| ≤ n , > 0) : lim sup |Dxm f (x)| ≤ .
|x|→∞
Ñëåäóþùàÿ òåîðåìà íàçûâàåòñÿ òåîðåìîé âëîæåíèÿ Ñîáîëåâà (îí åå àâ-
òîð).
Òåîðåìà 6.4.4. Åñëè ðàñïðåäåëåíèå
f ∈ H d/2+n+α (Rd ) , 0 < α < 1,
òî îíî çàäàåòñÿ ôóíêöèåé
f (x) ∈ C0n , α (Rd ),
ïðè÷åì ñóùåñòâóåò òàêàÿ íå çàâèñÿùàÿ îò f êîíñòàíòà C(d , α), ÷òî
∀(f ∈ H d/2+n+α (Rd )) : kf | C0n , α (Rd )k ≤ C(d , α)kf | H d/2+n+α (Rd )k.
(6.121)
Äîêàçàòåëüñòâî. Â ñèëó ôîðìóëû îáðàùåíèÿ ïðåîáðàçîâàíèÿ Ôóðüå
èìååì:
∀(m , |m| ≤ n , f ∈ S(Rd )) : |Dxm f (x + y) − Dxm f (x)| =
Z
−d
(2π) ξ m fb(ξ)[exp(i(ξ , y)) − 1] exp(i(ξ , x))dξ ≤
Z
const. (1 + ξ 2 )n/2 |fb(ξ)|| exp(i(ξ , y)) − 1|dξ ≤
Z 1/2
2 n+d/2+α b 2
const. (1 + ξ ) |f (ξ)| dξ ×
Z 1/2
2 2 −(d/2+α)
| exp(i(ξ , y)) − 1| (1 + ξ ) dξ ≤
Z 1/2
d/2+n+α d 2 −(d+2α)
const.kf | H (R )k | exp(i(ξ , y)) − 1| |ξ| dξ =
C(d , α)kf | H d/2+n+α (Rd )k|y|α . (6.122)
452
Страницы
- « первая
- ‹ предыдущая
- …
- 462
- 463
- 464
- 465
- 466
- …
- следующая ›
- последняя »
