Классические ортогональные полиномы. Балакин А.Б. - 52 стр.

UptoLike

Составители: 

Рубрика: 

T
0
(x) = U
0
= 1 , T
1
(x) = x , U
1
(x) = 2x ,
T
2
(x) = 2x
2
1 , U
2
(x) = 4x
2
1 .
T
n
(x)
p
(n,n)
= 2
n1
, p
(n,n1)
= 0 ,
U
n
(x)
p
(n,n)
= 2
n
, p
(n,n1)
= 0 ,
T
n
(x) U
n
(x)
N
2
n
(λ) =
π
2
.
T
n
(x)
T
n
(x) =
(1)
n
2πi
n!Γ(
1
2
)
2
n
Γ(n +
1
2
)
(1 x
2
)
1
2
Z
C
dξ
(1 ξ
2
)
n
1
2
(ξ x)
n+1
.
U
n
(x)
U
n
(x) =
(1)
n
2πi
(n + 1)!Γ(
1
2
)
2
n+1
Γ(n +
3
2
)
(1 x
2
)
1
2
Z
C
dξ
(1 ξ
2
)
n+
1
2
(ξ x)
n+1
.
T
n
(x) U
n
(x)
A
n
= 2 , B
n
= 0 , C
n
= 1 .
Z
n+1
(x) 2x Z
n
(x) + Z
n1
(x) = 0 ,
Z
n
(x) T
n
(x) U
n
(x)
(1 x
2
)
d
dx
T
n
(x) = n[T
n1
(x) xT
n
(x)] ,
Ïåðâûå òðè ïîëèíîìà ×åáûøåâà

             T0 (x) = U0 = 1 ,      T1 (x) = x ,       U1 (x) = 2x ,

                 T2 (x) = 2x2 − 1 ,         U2 (x) = 4x2 − 1 .                 (210)

Ïîëèíîìèàëüíûå êîýôôèöèåíòû äëÿ Tn (x)

                      p(n,n) = 2n−1 ,       p(n,n−1) = 0 ,                     (211)

Ïîëèíîìèàëüíûå êîýôôèöèåíòû äëÿ Un (x)

                       p(n,n) = 2n ,    p(n,n−1) = 0 ,                         (212)

Íîðìèðîâî÷íûå ìíîæèòåëè (àíàëîãè÷íû äëÿ Tn (x) è Un (x))
                                              π
                                 Nn2 (λ) =      .                              (213)
                                              2
Èíòåãðàëüíîå ïðåäñòàâëåíèå Tn (x)
                                                                       1
              (−1)n n!Γ( 12 )          2 12
                                            Z     (1 − ξ 2 )n− 2
     Tn (x) =                    (1 − x )      dξ                .             (214)
               2πi 2n Γ(n + 12 )             C     (ξ − x)n+1
Èíòåãðàëüíîå ïðåäñòàâëåíèå Un (x)
                                                                           1
            (−1)n (n + 1)!Γ( 12 )       2 − 12
                                               Z     (1 − ξ 2 )n+ 2
   Un (x) =                       (1 − x )        dξ                .          (215)
             2πi 2n+1 Γ(n + 32 )                C     (ξ − x)n+1
Êîýôôèöèåíòû ðåêóððåíòíîñòè (îäèíàêîâû äëÿ Tn (x) è Un (x))

                      An = 2 ,     Bn = 0 ,         Cn = 1 .                   (216)

Ðåêóððåíòíûå ñîîòíîøåíèÿ

                  Zn+1 (x) − 2x Zn (x) + Zn−1 (x) = 0 ,                        (217)

ãäå Zn (x) îáîçíà÷àåò ëèáî Tn (x), ëèáî Un (x).
Ôîðìóëû äèôôåðåíöèðîâàíèÿ
                            d
               (1 − x2 )      Tn (x) = n[Tn−1 (x) − xTn (x)] ,
                           dx
                                       52