ВУЗ:
Составители:
Рубрика:
x
k
x
−1
d
dx
!
k
[x
ν
J
ν
(x)] = x
ν−k
J
ν−k
(x) ,
x
−1
d
dx
!
k
h
x
−ν
J
ν
(x)
i
= (−1)
k
x
−ν−k
J
ν+k
(x) .
Z
dx x
ν
J
ν−1
(x) = x
ν
J
ν
(x) ,
Z
dx x
−ν
J
ν+1
(x) = −x
−ν
J
ν
(x) .
Y
ν
(x)
J
ν
(x)
sin πν = −sin π(ν −1) cos πν = −cos π(ν −1)
J
ν
Y
ν
I
ν
(x)
d
dx
[x
ν
I
ν
(x)] = x
ν
I
ν−1
(x) ,
d
dx
h
x
−ν
I
ν
(x)
i
= x
−ν
I
ν+1
(x) ,
2I
0
ν
(x) = I
ν−1
(x)+I
ν+1
(x) , I
ν−1
(x)−I
ν+1
(x) =
2ν
x
I
ν
(x) ,
x
−1
d
dx
!
k
[x
ν
I
ν
(x)] = x
ν−k
I
ν−k
(x) ,
x
−1
d
dx
!
k
h
x
−ν
I
ν
(x)
i
= x
−ν−k
I
ν+k
(x) ,
Z
dx x
ν
I
ν−1
(x) = x
ν
I
ν
(x) ,
Z
dx x
−ν
I
ν+1
(x) = x
−ν
I
ν
(x) .
Èç äèôôåðåíöèàëüíûõ ñîîòíîøåíèé äëÿ ôóíêöèé Áåññåëÿ (56) âûòåêà- þò äâà âàæíûõ ñëåäñòâèÿ. Âî-ïåðâûõ, ðàçäåëèì ñîîòíîøåíèÿ (56) íà x, ïðî- äèôôåðåíöèðóåì èõ åùå ðàç, çàòåì ïîâòîðèì óêàçàííóþ îïåðàöèþ íóæíîå ÷èñëî ðàç. Òîãäà î÷åâèäíûìè ñòàíîâÿòñÿ äèôôåðåíöèàëüíûå ñîîòíîøåíèÿ k -ãî ïîðÿäêà !k −1 d x [xν Jν (x)] = xν−k Jν−k (x) , dx d k h −ν ! −1 x Jν (x) = (−1)k x−ν−k Jν+k (x) . (59) i x dx Âî-âòîðûõ, èíòåãðèðóÿ ñîîòíîøåíèÿ äëÿ ôóíêöèé Áåññåëÿ (56), ïîëó÷èì èç- âåñòíûå íåîïðåäåëåííûå èíòåãðàëû Z Z dx xν Jν−1 (x) = xν Jν (x) , dx x−ν Jν+1 (x) = −x−ν Jν (x) . (60) Ôóíêöèè Áåññåëÿ âòîðîãî ðîäà Yν (x) ïîä÷èíÿþòñÿ òåì æå áàçîâûì äèôôå- ðåíöèàëüíûì ñîîòíîøåíèÿì (56), ÷òî è ôóíêöèè Jν (x). Äëÿ òîãî, ÷òîáû â ýòîì óáåäèòüñÿ, äîñòàòî÷íî âçÿòü îïðåäåëåíèå (34), âîñïîëüçîâàòüñÿ ôîðìó- ëàìè (56) ñ ó÷åòîì òîãî, ÷òî sin πν = − sin π(ν − 1) è cos πν = − cos π(ν − 1). Ýòî îçíà÷àåò, ÷òî âñå îñòàëüíûå ñîîòíîøåíèÿ (57)-(60) òàêæå íå ìåíÿþò ñâî- åãî âèäà ïðè çàìåíå Jν íà Yν . Ðåêóððåíòíûå ñîîòíîøåíèÿ äëÿ Iν (x), - ôóíêöèé Áåññåëÿ ìíèìîãî àð- ãóìåíòà, ïîëó÷àþòñÿ àíàëîãè÷íî, íî òåïåðü îíè îñíîâûâàþòñÿ íà äèôôå- ðåíöèðîâàíèè ôîðìóëû (43). Ëåãêî óáåäèòüñÿ, ÷òî ïîÿâëÿþùèåñÿ îòëè÷èÿ ñâÿçàíû ñ èçìåíåíèåì çíàêà âî âòîðîì ðàâåíñòâå (56): d ν d h −ν [x Iν (x)] = xν Iν−1 (x) , x Iν (x) = x−ν Iν+1 (x) , i dx dx 2ν 2Iν0 (x) = Iν−1 (x)+Iν+1 (x) , Iν−1 (x)−Iν+1 (x) = Iν (x) , x !k −1 d x [xν Iν (x)] = xν−k Iν−k (x) , dx !k d x−1 x−ν Iν (x) = x−ν−k Iν+k (x) , h i dx Z Z dx xν Iν−1 (x) = xν Iν (x) , dx x−ν Iν+1 (x) = x−ν Iν (x) . (61) 15
Страницы
- « первая
- ‹ предыдущая
- …
- 13
- 14
- 15
- 16
- 17
- …
- следующая ›
- последняя »