Три лекции по теории функций Бесселя. Балакин А.Б. - 18 стр.

UptoLike

Составители: 

Рубрика: 

2
2m+1
[1 · 2 · · · (m 1) · m]
"
m+
1
2
!
·
m
1
2
!
· · ·
3
2
·
1
2
· Γ
1
2
!#
2
2m+1
2 · 4 · · · 2(m1) · 2m · (2m+1) · (2m1) · · · 3 · 1 ·
π=
π(2m+1)! ,
sin x
J
1
2
(x) =
v
u
u
t
2
πx
X
m=0
(1)
m
x
2m+1
(2m+1)!
=
v
u
u
t
2
πx
sin x .
J
1
2
(x)
J
1
2
(x) =
v
u
u
t
2
πx
X
m=0
(1)
m
x
2m
(2m)!
=
v
u
u
t
2
πx
cos x .
ν=
1
2
Y
1
2
(x) = J
1
2
(x) =
v
u
u
t
2
πx
cos x , Y
1
2
(x) = J
1
2
(x) =
v
u
u
t
2
πx
sin x ,
H
(1)
1
2
(x) = i
v
u
u
t
2
πx
e
ix
, H
(2)
1
2
(x) = i
v
u
u
t
2
πx
e
ix
,
H
(1)
1
2
(x) =
v
u
u
t
2
πx
e
ix
, H
(2)
1
2
(x) =
v
u
u
t
2
πx
e
ix
.
I
1
2
(x) I
1
2
(x)
I
1
2
(x) =
v
u
u
t
2
πx
sinh x , I
1
2
(x) =
v
u
u
t
2
πx
cosh x .
K
1
2
= K
1
2
=
s
π
2x
e
x
.
Ðàñêðûâ ãàììà-ôóíêöèè ñ ïîìîùüþ ñîîòíîøåíèé (19), (20)
                                                   1    1     3 1    1
                                             "            !          !                        !#
     22m+1
             [1 · 2 · · · (m − 1) · m]           m+ · m− · · · · · Γ                                 (74)
                                                   2    2     2 2    2
è ðåîðãàíèçîâàâ ïðîèçâåäåíèå ñ ïîìîùüþ ìíîæèòåëÿ 22m+1 ê âèäó
                                                                           √       √
   2 · 4 · · · 2(m−1) · 2m · (2m+1) · (2m−1) · · · 3 · 1 ·                       π= π(2m+1)! ,       (75)

ïîëó÷àåì, ÷òî ïðåîáðàçîâàííûé ðÿä ñâîäèòñÿ ê ôóíêöèè sin x, à ñàìà ôóíê-
öèÿ Áåññåëÿ ïðèíèìàåò âèä
                              v                                          v
                                            ∞        2m+1
                                   2             m x
                                                            u 2
                              u                                          u
                                                                                                     (76)
                              u             X
                 J 12 (x) =   t
                                             (−1)         = t sin x .
                                  πx      m=0     (2m+1)!    πx
Àíàëîãè÷íàÿ ïðîöåäóðà ïðèâîäèò ê ôîðìóëå äëÿ J− 1 (x):
                                                                             2
                                  v                                    v
                                       2     ∞        x2m                   2
                                  u                                    u
                                                          m
                                                                                                     (77)
                                  u          X                         u
                  J− 12 (x) =     t
                                                (−1)       =           t
                                                                              cos x .
                                      πx     m=0     (2m)!                 πx
Ôóíêöèè Âåáåðà-Øëåôëè (34) ïðè ν= 12 ñâîäÿòñÿ ê íàéäåííûì ôóíêöèÿì:
                                    v                                               v
                                         2                                               2
                                    u                                               u
                                                                                                     (78)
                                    u                                               u
    Y 12 (x) = −J− 12 (x) = −       t
                                           cos x ,        Y− 21 (x) = J 12 (x) =    t
                                                                                           sin x ,
                                        πx                                              πx
à ñîîòâåòñòâóþùèå ôóíêöèè Õàíêåëÿ (39), (40) ïðèíèìàþò âèä
                                        v                                v
                                             2 ix                             2 −ix
                                        u                                u
                    (1)                 u                     (2)        u
                  H 1 (x) = −i          t
                                               e ,        H 1 (x) = i    t
                                                                                e ,
                    2                       πx                2              πx
                                      v                               v
                           2 ix                  u 2
                                      u                               u
                 (1)                   (2)
                                                       e−ix .          (79)
                                      u
               H− 1 (x) =    e , H− 1 (x) = t
                                      t
                   2      πx             2         πx
Ïîâòîðÿÿ óêàçàííûå âû÷èñëåíèÿ äëÿ ôóíêöèé Áåññåëÿ ìíèìîãî àðãóìåíòà,
îáíàðóæèâàåì, ÷òî äëÿ ïîëó÷åíèÿ I 1 (x) è I− 1 (x) äîñòàòî÷íî çàìåíèòü òðè-
                                  2          2

ãîíîìåòðè÷åñêèå ôóíêöèè íà ãèïåðáîëè÷åñêèå â ôîðìóëàõ (76), (77):
                                v                                   v
                                     2                                   2
                                u                                   u
                                                                                                     (80)
                                u                                   u
                   I 21 (x) =   t
                                       sinh x ,       I− 12 (x) =   t
                                                                           cosh x .
                                    πx                                  πx
Íàêîíåö, ñîãëàñíî îïðåäåëåíèþ (44) ïîëó÷èì ôóíêöèè Ìàêäîíàëüäà:
                                                              π −x
                                                          s
                                    K 12 = K− 12 =               e .                                 (81)
                                                              2x


                                                     18