Три лекции по теории функций Бесселя. Балакин А.Б. - 23 стр.

UptoLike

Составители: 

Рубрика: 

ν
J
ν
(x)
J
ν
(x) =
2
x
2
ν
π Γ
ν+
1
2
π
2
Z
0
cos(x sin ϕ)(cos ϕ)
2ν
.
t = sin ϕ
J
ν
(x) =
x
2
ν
Γ
1
2
Γ
ν+
1
2
1
Z
1
dt cos(xt)(1 t
2
)
ν
1
2
,
I
ν
(x) =
x
2
ν
Γ
1
2
Γ
ν+
1
2
1
Z
1
dt e
xt
(1 t
2
)
ν
1
2
.
cos(xt) cos(xt)+i sin(xt) = e
ixt
x ix
I
ν
(x) =
1
π
π
Z
0
e
x cos θ
cos νθ
sin πν
π
Z
0
e
x cosh ξνξ
.
ν = n
sin πn = 0
K
ν
(x) =
Γ
1
2
x
2
ν
Γ
ν+
1
2
Z
0
e
x cosh ξ
(sinh ξ)
2ν
.
à ñóììà, âûäåëåííàÿ êâàäðàòíûìè ñêîáêàìè, åñòü íè÷òî èíîå, êàê ðàçëîæå-
íèå â ðÿä ôóíêöèè Áåññåëÿ ïåðâîãî ðîäà èíäåêñà ν . Ñðàâíèâàÿ (102) è (97)
ïîëó÷àåì ïðåäñòàâëåíèå ôóíêöèè Jν (x) ñ ïîìîùüþ èíòåãðàëà Ïóàññîíà:
                               ν       π
                           2 x2      Z2
               Jν (x) = √     
                                 1
                                       dϕ cos(x sin ϕ)(cos ϕ)2ν .                   (103)
                          π Γ ν+ 2 0

Çàìåíîé t = sin ϕ îíî ñâîäèòñÿ ê äðóãîìó èçâåñòíîìó èíòåãðàëó
                               ν
                               x        Z1                                   1
               Jν (x) =        2
                                                  dt cos(xt)(1 − t2 )ν− 2 ,          (104)
                          Γ 21 Γ ν+ 12 −1
                                   



êîòîðûé ëåãêî îáîáùàåòñÿ íà ñëó÷àé ôóíêöèé Áåññåëÿ ìíèìîãî àðãóìåíòà.

2.3.3. Èíòåãðàëüíûå ïðåäñòàâëåíèÿ ìîäèôèöèðîâàííûõ ôóíêöèé
                                     Áåññåëÿ

     Äëÿ ñïðàâêè óìåñòíî òàêæå ïðèâåñòè èíòåãðàëüíîå ïðåäñòàâëåíèå òèïà
Ïóàññîíà äëÿ ìîäèôèöèðîâàííûõ ôóíêöèé Áåññåëÿ (Schl
                                                   ai, 1868)
                                 ν
                                 x        Z1                             1
                 Iν (x) =        2
                                                   dt e−xt (1 − t2 )ν− 2 .           (105)
                            Γ 21 Γ ν+ 12 −1
                                     



Ôîðìóëà (105) ìîæåò áûòü ïîëó÷åíà èç (104) ñëåäóþùèì îáðàçîì: â ñèëó
ñèììåòðè÷íîñòè ïðåäåëîâ èíòåãðèðîâàíèÿ (104) íå èçìåíèòñÿ, åñëè çàìåíèòü
cos(xt) ïîä çíàêîì èíòåãðàëà íà cos(xt)+i sin(xt) = eixt , ñëåäîâàòåëüíî, çà-
ìåíà x íà ix íåïîñðåäñòâåííî ïðèâîäèò ê (105). Ïðåäñòàâëåíèå ìîäèôèöèðî-
âàííûõ ôóíêöèé Áåññåëÿ ñ ïîìîùüþ êîíòóðíîãî èíòåãðàëà [1] âîâëåêàåò â
ðàññìîòðåíèå íåñîáñòâåííûå èíòåãðàëû ïî áåñêîíå÷íîìó èíòåðâàëó

                     1 Zπ                      sin πν       Z∞
            Iν (x) =      dθ ex cos θ cos νθ −                   dξe−x cosh ξ−νξ .   (106)
                     π0                           π         0

Âàæíî îòìåòèòü, ÷òî ïðè öåëîì ν = n âòîðàÿ ÷àñòü ýòîãî èíòåãðàëà èñ÷åçà-
åò, ïîñêîëüêó sin πn = 0. Èñïîëüçóÿ (106) â îïðåäåëåíèè (44), ìîìåíòàëüíî
ïîëó÷àåì ïåðâîå èíòåãðàëüíîå ïðåäñòàâëåíèå äëÿ ôóíêöèè Ìàêäîíàëüäà
                                 ν
                         Γ 21 x2         Z∞
                 Kν (x) =  1                dξe−x cosh ξ (sinh ξ)2ν .              (107)
                          Γ ν+ 2         0



                                             23