Три лекции по теории функций Бесселя. Балакин А.Б. - 35 стр.

UptoLike

Составители: 

Рубрика: 

f(p) = A exp
c
m
2
c
2
+ p
2
k
B
T
p
p
q
(~p)
2
m c k
B
T A
N E P
N = 4π
Z
0
p
2
dp f(p) ,
E = 4πc
Z
0
p
2
dp
q
m
2
c
2
+ p
2
f(p) ,
P =
4π
3
Z
0
p
4
m
2
c
2
+ p
2
dp f(p) .
p = mc sinh t
mc cosh t
N = 4πAm
3
c
3
Z
0
dt sinh
2
t cosh te
λ cosh t
,
E = 4πAm
4
c
5
Z
0
dt sinh
2
t cosh
2
te
λ cosh t
,
P =
4
3
πm
4
c
5
A
Z
0
dt sinh
4
te
λ cosh t
,
λ =
mc
2
k
B
T
K
ν
(λ)
K
1
(λ) = λ
Z
0
dt sinh
2
te
λ cosh t
,
K
2
(λ) =
1
3
λ
2
Z
0
dt sinh
4
te
λ cosh t
.
           3.3.3. Ôóíêöèè ñîñòîÿíèÿ ðåëÿòèâèñòñêîãî ãàçà

      òåîðèè ðåëÿòèâèñòñêèõ ñòàòèñòè÷åñêèõ ñèñòåì ôóíêöèÿ
                                           √          
                                          c m2 c2 + p2 
                                                                          (165)
                                               
                        f (p) = A exp −
                                             kB T      

îïèñûâàåò èçîòðîïíîå îäíîðîäíîå ðàñïðåäåëåíèÿ ÷àñòèö ïî èìïóëüñàì p, ãäå
    q
p ≡ (~p)2 , m - ìàññà ïîêîÿ ÷àñòèöû, c - ñêîðîñòü ñâåòà, kB - ïîñòîÿííàÿ Áîëüö-
ìàíà, T - òåìïåðàòóðà, A- íîðìèðîâî÷íûé ìíîæèòåëü. ×èñëî ÷àñòèö â åäè-
íèöå îáúåìà N , ïëîòíîñòü ýíåðãèè E , äàâëåíèå â ñèñòåìå P îïðåäåëÿþòñÿ
ñëåäóþùèìè èíòåãðàëàìè ñ ôóíêöèåé ðàñïðåäåëåíèÿ (165):
                                               Z∞
                             N = 4π                 p2 dp f (p) ,               (166)
                                               0
                                 Z∞                q
                       E = 4πc        p2 dp m2 c2 + p2 f (p) ,                  (167)
                                 0
                            4π   Z∞             p4
                       P=             √                  dp f (p) .             (168)
                             3   0
                                              m2 c2 + p2
Ñ ïîìîùüþ çàìåíû ïåðåìåííîé èíòåãðèðîâàíèÿ p = mc sinh t óäàåòñÿ ïðåîá-
ðàçîâàòü êâàäðàòíûé êîðåíü ê ãèïåðáîëè÷åñêîìó êîñèíóñó mc cosh t, è èñêî-
ìûå âåëè÷èíû ïðåäñòàâëÿþòñÿ èíòåãðàëàìè
                                      Z∞
                   N = 4πAm c  3 3
                                              dt sinh2 t cosh te−λ cosh t ,     (169)
                                      0
                                     Z∞
                   E = 4πAm c 4 5
                                          dt sinh2 t cosh2 te−λ cosh t ,        (170)
                                     0
                         4      Z∞
                      P = πm c A dt sinh4 te−λ cosh t ,
                            4 5
                                                                                (171)
                         3      0
                                     mc2
ãäå áåçðàçìåðíûé ïàðàìåòð λ =        kB T       çàäàåò îòíîøåíèå ýíåðãèè ïîêîÿ ÷àñòèö
ê èõ ñðåäíåé êèíåòè÷åñêîé ýíåðãèè. Ñîãëàñíî (107) èç èíòåãðàëüíîãî ïðåä-
ñòàâëåíèÿ ôóíêöèé Ìàêäîíàëüäà Kν (λ) ñëåäóåò, ÷òî
                                          Z∞
                        K1 (λ) = λ             dt sinh2 te−λ cosh t ,           (172)
                                          0

                               1 2 Z∞
                       K2 (λ) = λ dt sinh4 te−λ cosh t .                        (173)
                               3 0

                                                   35