Три лекции по теории функций Бесселя. Балакин А.Б. - 33 стр.

UptoLike

Составители: 

Рубрика: 

C
(1)
imn
C
(1)
imn
=
4
πhR
2
J
2
m+1
µ
(m)
i
×
×
R
Z
0
2π
Z
0
h
Z
0
ρdρdϕdzF (ρ, ϕ, z)J
m
µ
(m)
i
ρ
R
cos sin
πnz
h
!
.
m 1 m = 0
C
(1)
i0n
=
2
πhR
2
J
2
1
µ
(0)
i
×
×
R
Z
0
2π
Z
0
h
Z
0
ρdρdϕdzF (ρ, ϕ, z)J
0
µ
(0)
i
ρ
R
sin
πnz
h
!
.
C
(2)
imn
=
4
πhR
2
J
2
m+1
µ
(m)
i
×
×
R
Z
0
2π
Z
0
h
Z
0
ρdρdϕdzF (ρ, ϕ, z)J
m
µ
(m)
i
ρ
R
sin sin
πnz
h
!
U + k
2
U = 0 .
k k = 0
1
r
2
r
r
2
U
r
!
+
1
r
2
θϕ
U + k
2
U = 0 ,
Âîñïîëüçîâàâøèñü äàëåå óñëîâèåì îðòîãîíàëüíîñòè - íîðìèðîâêè (122) äëÿ
                                                                                             (1)
ôóíêöèé Áåññåëÿ ïåðâîãî ðîäà, ïîëó÷èì íàáîð êîýôôèöèåíòîâ Cimn :
                                    (1)                 4
                                  Cimn =                                  ×
                                                  2                  (m)
                                            πhR2 Jm+1               µi
                                                                     
             ZR Z2π Zh                                      (m)
                                                µi ρ             πnz
                                                                                        !
         ×               ρdρdϕdzF (ρ, ϕ, z)Jm 
                                                     cos mϕ sin     .                            (152)
             0 0 0
                                                  R                h
Ñëåäóåò îñîáî íàïîìíèòü, ÷òî ñîãëàñíî ïðàâèëàì ðàçëîæåíèÿ â ðÿä Ôóðüå
ôîðìóëà (152) ñïðàâåäëèâà òîëüêî äëÿ m ≥ 1, à äëÿ m = 0 ñëåäóåò èñïîëü-
çîâàòü ôîðìóëó ñ ïîëîâèííûì êîýôôèöèåíòîì
                                      (1)               2
                                    Ci0n =                               ×
                                                                    (0)
                                                πhR2 J12 µi
                                                            
                                                            
                    ZR Z2π Zh                           (0)
                                                       µi ρ                    πnz
                                                                                   !
                ×               ρdρdϕdzF (ρ, ϕ, z)J0 
                                                            sin                   .              (153)
                    0 0 0
                                                                      R          h
Êîýôôèöèåíòû
                                    (2)                 4
                                  Cimn =              ×        
                                                  (m)
                                                  2
                                            πhR2 Jm+1
                                                µi
                                                   
            ZR Z2π Zh                         (m)
                                             µ    ρ                                πnz
                                                                                         !
                                              i
          ×           ρdρdϕdzF (ρ, ϕ, z)Jm 
                                                    sin mϕ sin
                                                    
                                                                                                   (154)
              0 0 0
                                                                R                   h
íàõîäÿòñÿ àíàëîãè÷íî. Ïîñòàâëåííàÿ çàäà÷à ðåøåíà, ïðè÷åì ïðè å¼ ðåøåíèè
ìû ñóùåñòâåííî èñïîëüçîâàëè ñâîéñòâà ôóíêöèé Áåññåëÿ ïåðâîãî è âòîðîãî
ðîäà, à òàêæå ôóíêöèé Áåññåëÿ ìíèìîãî àðãóìåíòà.

    3.3.2. Ðàçäåëåíèå ïåðåìåííûõ â óðàâíåíèè Ãåëüìãîëüöà â
                          ñôåðè÷åñêîé ñèñòåìå êîîðäèíàò

Öåëûé ðÿä ôèçè÷åñêèõ çàäà÷ ïðèâîäèò ê óðàâíåíèþ Ãåëüìãîëüöà (Helmholtz)

                                          ∆U + k 2 U = 0 .                                         (155)

Çäåñü k - íåêîòîðàÿ âîîáùå ãîâîðÿ íåíóëåâàÿ êîíñòàíòà; åñëè k = 0, óðàâ-
íåíèå Ãåëüìãîëüöà ïðåâðàùàåòñÿ â óðàâíåíèå Ëàïëàñà (Laplace).  ñôåðè÷å-
ñêîé ñèñòåìå êîîðäèíàò óðàâíåíèå Ãåëüìãîëüöà óäîáíî çàïèñàòü â âèäå
                          1 ∂    2 ∂U   1
                                            !

                           2
                               r      +   2
                                            ∆θϕ U + k 2 U = 0 ,                                    (156)
                          r ∂r     ∂r   r
                                                   33