Три лекции по теории функций Бесселя. Балакин А.Б. - 32 стр.

UptoLike

Составители: 

Рубрика: 

C
(2)
m
=0 J
m
(σρ)
R(ρ)
J
m
(σR) = 0 σ =
µ
(m)
i
R
µ
(m)
i
i m
U =
X
i=1
X
n=1
X
m=0
exp
a
2
µ
(m)
i
R
2
+
πn
l
!
2
t
×
×J
m
µ
(m)
i
ρ
R
sin
πnz
h
!
C
(1)
imn
cos +C
(2)
imn
sin
.
U
z = 0 z = h U
sin
πnz
h
ρ = R
J
m
(µ
(m)
i
) = 0
C
(1)
imn
C
(2)
imn
t = 0
F (ρ, ϕ, z) =
X
i=1
X
n=1
X
m=0
J
m
µ
(m)
i
ρ
R
×
×sin
πnz
h
!
C
(1)
imn
cos +C
(2)
imn
sin
.
2π
Z
0
cos m
0
ϕ cos mϕdϕ = πδ
mm
0
,
2π
Z
0
cos m
0
ϕ sin mϕdϕ = 0 ,
h
Z
0
dz sin
πnz
h
!
sin
πn
0
z
h
=
h
2
δ
nn
0
,
2π
Z
0
cos
h
Z
0
dz sin
πnz
h
!
F (ρ, ϕ, z) =
πh
2
X
i=1
C
(1)
imn
J
m
µ
(m)
i
ρ
R
.
ïðèíÿòü, ÷òî Cm
              (2)
                  =0. ×òî æå êàñàåòñÿ ôóíêöèé Áåññåëÿ ïåðâîãî ðîäà Jm (σρ),
îíè èìåþò áåñ÷èñëåííîå ìíîæåñòâî ïîëîæèòåëüíûõ âåùåñòâåííûõ êîðíåé è
ñïîñîáíû îáåñïå÷èòü îáðàùåíèå â íóëü ôóíêöèè R(ρ) íà ïîâåðõíîñòè öè-
ëèíäðà ïî àíàëîãèè ñ òåì, êàê ýòî óäàëîñü ñäåëàòü ñ òðèãîíîìåòðè÷åñêèìè
                                                                                                            (m)
                                                                                                            µi
ôóíêöèÿìè â (136)-(137). Ïîëàãàÿ Jm (σR) = 0, íàéäåì, ÷òî σ =                                                R    , ãäå
                  (m)
ñèìâîëîì µi             îáîçíà÷åí i-ûé ïî ñ÷åòó êîðåíü ôóíêöèè Áåññåëÿ èíäåêñà m.
        Çàâåðøàÿ ïîñòðîåíèå ðåøåíèÿ èñõîäíîãî ëèíåéíîãî óðàâíåíèÿ òåïëî-
ïðîâîäíîñòè, çàïèøåì ñëåäóþùóþ òðîéíóþ ñóììó
                                                                                            
                                                           (m) 2
                                                            
                                   ∞ X ∞ X ∞             µi                        πn 2
                                                       
                                                                                      !      
                                                                                              
                                                                                            
                                              exp −a2 
                                  X
                        U=                                    +                           t ×
                                  i=1 n=1 m=0     
                                                          R                          l      
                                                                                              
                                                                                              
                             
                             
                         (m)
                        µi ρ                     πnz
                                                           !                      
                                                             (1)         (2)
                  ×Jm 
                             sin                          Cimn cos mϕ+Cimn sin mϕ                 .            (147)
                                   R               h
Ôóíêöèÿ U óäîâëåòâîðÿåò óðàâíåíèþ (126) ïî ïîñòðîåíèþ. Ýòà ôóíêöèÿ
îãðàíè÷åíà âî âñåõ òî÷êàõ âíóòðè öèëèíäðà äëÿ ëþáîãî ìîìåíòà âðåìåíè
è ïåðèîäè÷íà ïî ïîëÿðíîìó óãëó. Ïðè z = 0 è z = h ôóíêöèÿ U îáðàùàåòñÿ
â íóëü çà ñ÷åò ìíîæèòåëÿ sin                       h . Ïðè
                                       ρ = R íàéäåííàÿ ôóíêöèÿ îáðà-
                                                   
                                                  πnz
                                                      

                                                  (m)
ùàåòñÿ â íóëü, ïîñêîëüêó                     Jm (µi ) = 0.
                                       Îñòàâøèåñÿ íåîòîæäåñòâëåííûìè
            (1)    (2)
êîíñòàíòû Cimn è Cimn ìîãóò áûòü íàéäåíû ñ ïîìîùüþ íà÷àëüíîãî óñëîâèÿ
(129). Äåéñòâèòåëüíî, ïîëàãàÿ t = 0 â (147), ïîëó÷èì ñîîòíîøåíèå
                                                                              
                                                       ∞ X ∞
                                                         ∞ X               (m)
                                                       X                  µi ρ 
                                   F (ρ, ϕ, z) =                     Jm 
                                                                              ×
                                                       i=1 n=1 m=0              R
                      πnz  (1)
                                              !    
                                         (2)
                × sin       Cimn cos mϕ+Cimn sin mϕ .          (148)
                       h
Èñïîëüçóÿ ñîîòíîøåíèÿ îðòîãîíàëüíîñòè-íîðìèðîâêè äëÿ òðèãîíîìåòðè÷å-
ñêèõ ôóíêöèé
              Z2π                                                    Z2π
                              0
                    cos m ϕ cos mϕdϕ = πδmm0 ,                             cos m0 ϕ sin mϕdϕ = 0 ,               (149)
              0                                                      0
                                    Zh                    πn0 z  h
                                                                           
                                                πnz
                                                        !
                                         dz sin     sin         = δnn0 ,                                        (150)
                                    0
                                                 h         h      2
ëåãêî ïîëó÷èòü ïåðâîå èíòåãðàëüíîå ñëåäñòâèå (148):
                                                                                                  
    Z2π                  Zh                                                     ∞              (m)
                                           πnz               πh                               µi ρ 
                                               !
                                                                                     (1)
                                                                                                                 (151)
                                                                                X
          dϕ cos mϕ           dz sin           F (ρ, ϕ, z) =                        Cimn Jm 
                                                                                                      .
    0                    0
                                            h                 2 i=1                             R

                                                                32