ВУЗ:
Составители:
1000000 рублей через три месяца.
Решение:
Искомую величину d (учетную ставку) выразим из формулы (2.10):
%72.52
90
360
1000000
8700001000000
*
=⋅
−
=⋅
−
=
−
=
t
K
S
PS
n
S
PS
d
По этой же формуле величину учетной ставки рассчитывает функция
СКИДКА:
СКИДКА(35431;35521;870000;1000000;1) = 52.72%
СКИДКА("1.01.97";"1.04.97";870000; 1000000;1) = 52.72%
Контрольные вопросы
1. Условия применения простых процентных ставок.
2. Реинвестирование средств.
3. Наращение и выплата процентов в потребительском кредите.
4. Понятие дисконтирования.
5. Математическое дисконтирование, коммерческий (банковский) учет.
3. Сложные проценты
В среднесрочных и долгосрочных финансово-кредитных операциях, если
проценты не выплачиваются сразу же после их начисления, а
присоединяются к сумме долга, для наращения применяются сложные
проценты. База для начисления сложных процентов увеличивается с каждым
периодом выплат.
Присоединение начисленных процентов к сумме долга, которая служит
базой для их начисления, называют капитализацией процентов.
Формула для расчета наращенной суммы в конце n-го года при
условии, что проценты начисляются один раз в году, имеет вид:
n
iPS )1( +⋅=
(3.1)
где Р - первоначальный размер долга;
1000000 рублей через три месяца. Решение: Искомую величину d (учетную ставку) выразим из формулы (2.10): S − P S − P K 1000000 − 870000 360 d= = ⋅ = ⋅ = 52 .72 % S *n S t 1000000 90 По этой же формуле величину учетной ставки рассчитывает функция СКИДКА: СКИДКА(35431;35521;870000;1000000;1) = 52.72% СКИДКА("1.01.97";"1.04.97";870000; 1000000;1) = 52.72% Контрольные вопросы 1. Условия применения простых процентных ставок. 2. Реинвестирование средств. 3. Наращение и выплата процентов в потребительском кредите. 4. Понятие дисконтирования. 5. Математическое дисконтирование, коммерческий (банковский) учет. 3. Сложные проценты В среднесрочных и долгосрочных финансово-кредитных операциях, если проценты не выплачиваются сразу же после их начисления, а присоединяются к сумме долга, для наращения применяются сложные проценты. База для начисления сложных процентов увеличивается с каждым периодом выплат. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называют капитализацией процентов. Формула для расчета наращенной суммы в конце n-го года при условии, что проценты начисляются один раз в году, имеет вид: S = P ⋅ (1 + i ) n (3.1) где Р - первоначальный размер долга;
Страницы
- « первая
- ‹ предыдущая
- …
- 8
- 9
- 10
- 11
- 12
- …
- следующая ›
- последняя »