Теория вероятностей и математическая статистика. Билялов Р.Ф. - 101 стр.

UptoLike

Составители: 

Θ(β
0
, β
1
, β
2
) =
n
X
i=1
(y
i
(β
0
+ β
1
x
i
+ β
2
x
2
i
))
2
, (n = 7)
β
0
, β
1
β
2
.
β = S
1
XY,
β =
β
0
β
1
β
2
, Y =
y
1
y
2
·
·
·
y
n
, X =
1 1 ··· 1
x
1
x
2
··· x
n
x
2
1
x
2
2
··· x
2
n
=
=
1 1 ··· 1
3 2 ··· 3
9 4 ··· 9
, S = XX
T
.
β
i
, β
T
= (β
0
, β
1
, β
2
) =
= (1.333, 1.071, 1.119).
H
0
: β
1
= 0, β
2
= 0.
F =
Q
R
/(k 1)
Q
0
/(n k)
=
Q
R
(k 1)s
2
,
s
2
=
Q
0
nk
, Q
0
=
n
P
i=1
(y
i
(β
0
+ β
1
x
i
+ β
2
x
2
i
))
2
Q
R
= β
T
XY n¯y
2
H
0
F
k 1 n k
F, Q
R
= 137.33, s
2
= 0.381, F =
   à) Ïî ìåòîäó íàèìåíüøèõ êâàäðàòîâ ìèíèìèçèðóÿ ôóíêöèþ
                              n
                              X
        Θ(β0 , β1 , β2 ) =      (yi − (β0 + β1 xi + β2 x2i ))2 , (n = 7)
                              i=1

ïîëó÷èì óðàâíåíèÿ äëÿ îïðåäåëåíèÿ ïàðàìåòðîâ β0 , β1 è β2 . Ïîëó-
÷åíèå ðåøåíèÿ óðàâíåíèé îïèñàíî â çàäà÷å 9.18. Ðåøåíèå èìååò âèä:
β = S −1 XY, ãäå èñïîëüçîâàíû îáîçíà÷åíèÿ
                             
                           y1
                       y2                        
              β0                      1 1 ···     1
                         · 
       β =  β1  , Y =           
                         ·  , X = x1 x2 · · · xn =
                                                      
              β2                      2   2       2
                                       x1 x2 · · · xn
                         · 
                                    yn
                                                
                          1  1 ···             1
                     =  −3 −2 · · ·           3  , S = XX T .
                          9  4 ···             9
Ïîäñòàâëÿÿ ÷èñëîâûå çíà÷åíèÿ ìàòðè÷íûõ ýëåìåíòîâ, îáîçíà÷àÿ íàé-
äåííûå çíà÷åíèÿ ïàðàìåòðîâ βi∗ , ïîëó÷àåì β ∗T = (β0∗ , β1∗ , β2∗ ) =
= (−1.333, 1.071, 1.119).
   á) Ìîäåëü íàçûâàåòñÿ ñòàòèñòè÷åñêè çíà÷èìîé, åñëè îòâåðãàåòñÿ
ãèïîòåçà H0 : β1 = 0, β2 = 0.
   Äëÿ ïðîâåðêè çíà÷èìîñòè ãèïîòåçû ïðèíèìàåòñÿ ñòàòèñòèêà

                                QR /(k − 1)      QR
                          F =               =           ,
                                Q0 /(n − k)   (k − 1)s2

            Q0            P
                          n
ãäå s2 =   n−k ,   Q0 =    (yi − (β0∗ + β1∗ xi + β2∗ x2i ))2  îñòàòî÷íàÿ ñóììà
                       i=1
êâàäðàòîâ, QR =       β ∗T XY − nȳ 2 − ñóììà êâàäðàòîâ, îáóñëîâëåííàÿ
ðåãðåññèåé.
   Åñëè ãèïîòåçà H0 âåðíà, òî ñòàòèñòèêà F èìååò ðàñïðåäåëåíèå
Ôèøåðà ñ k − 1 è n − k ñòåïåíÿìè ñâîáîäû. Âû÷èñëÿÿ âåëè÷èíû,
âõîäÿùèå â ñòàòèñòèêó F, ïîëó÷èì QR = 137.33, s2 = 0.381, F =


                                         101