ВУЗ:
Составители:
Рубрика:
P = (p
ij
) =
p
11
··· p
1N
p
21
··· p
2N
· ··· ·
· ··· ·
· ··· ·
p
N1
··· p
NN
,
N
X
j=1
p
ij
= 1,
p
ij
|
t
(2) =
P (ξ
t+2
= j|ξ
t
= i) :
P (ξ
t+2
= j|ξ
t
= i) =
=
N
X
k=1
P (ξ
t+1
= k|ξ
t
= i)P (ξ
t+2
= j|ξ
t
= i, ξ
t+1
= k) =
=
N
X
k=1
P (ξ
t+1
= k|ξ
t
= i)P (ξ
t+2
= j|ξ
t+1
= k) =
N
X
k=1
p
ik
p
kj
= (P
2
)
ij
.
p
ij
|
t
(s) = P (ξ
t+s
= j|ξ
t
= i) = (P
s
)
ij
,
q = (q
1
, q
2
, ..., q
N
), q
i
= P (ξ
0
= i),
P (ξ
t
= i) =
N
X
k=1
P (ξ
0
= k)P (ξ
t
= i|ξ
0
= k) =
N
X
k=1
q
k
p
ki
= (qP
t
)
i
.
∃ s P
s
lim
t→∞
P
t
=
q
∗
1
··· q
∗
N
· ··· ·
· ··· ·
· ··· ·
q
∗
1
··· q
∗
N
,
q
∗
= (q
∗
1
, q
∗
2
, ..., q
∗
N
)
q
∗
P = q
∗
,
N
P
i=1
q
∗
i
= 1, q
∗
i
≥ 0.
ðàññìàòðèâàòü òîëüêî îäíîðîäíûå öåïè Ìàðêîâà. Ìàòðèöà
p11 · · · p1N
p21 · · · p2N
X
· · · · · N
P = (pij ) =
·
,
pij = 1,
··· · j=1
· ··· ·
pN 1 · · · pN N
íàçûâàåòñÿ ìàòðèöåé âåðîÿòíîñòåé ïåðåõîäà. Ñîñ÷èòàåì pij |t (2) =
P (ξt+2 = j|ξt = i) :
P (ξt+2 = j|ξt = i) =
N
X
= P (ξt+1 = k|ξt = i)P (ξt+2 = j|ξt = i, ξt+1 = k) =
k=1
N
X N
X
= P (ξt+1 = k|ξt = i)P (ξt+2 = j|ξt+1 = k) = pik pkj = (P 2 )ij .
k=1 k=1
Àíàëîãè÷íî pij |t (s) = P (ξt+s = j|ξt = i) = (P s )ij ,
ïîýòîìó, åñëè ââå-
ñòè âåêòîð íà÷àëüíûõ âåðîÿòíîñòåé q = (q1 , q2 , ..., qN ), qi = P (ξ0 = i),
òî
N
X N
X
P (ξt = i) = P (ξ0 = k)P (ξt = i|ξ0 = k) = qk pki = (qP t )i .
k=1 k=1
Òåîðåìà. Ïóñòü ∃ s , òàêîå, ÷òî ó Ps âñå ýëåìåíòû áîëüøå
íóëÿ, òîãäà
q1∗ ··· qN∗
· ··· ·
lim P =
t
· ··· · ,
t→∞
· ··· ·
q1∗ ··· qN∗
ãäå q ∗ = (q1∗ , q2∗ , ..., qN
∗ ) òàê íàçûâàåìûé âåêòîð ñòàöèîíàðíûõ ñî-
ñòîÿíèé. Âåêòîð ñòàöèîíàðíûõ ñîñòîÿíèé îïðåäåëÿåòñÿ ñëåäóþùè-
P
N
ìè óñëîâèÿìè: q ∗ P = q ∗ , qi∗ = 1, qi∗ ≥ 0. Òåîðåìó ïðèìåì áåç
i=1
äîêàçàòåëüñòâà.
105
Страницы
- « первая
- ‹ предыдущая
- …
- 103
- 104
- 105
- 106
- 107
- …
- следующая ›
- последняя »
