Теория вероятностей и математическая статистика. Билялов Р.Ф. - 111 стр.

UptoLike

Составители: 

2) P (t+1) = P (t)P =
µ
1
α + β
·
β α
β α
¸
+
(1 α β)
t
α + β
·
α α
β β
¸¶
·
·
µ
1
α + β
·
β α
β α
¸
+
1 α β
α + β
·
α α
β β
¸¶
=
=
1
α + β
·
β α
β α
¸
+
(1 α β)
t+1
α + β
·
α α
β β
¸
.
0 < α < 1, 0 < β < 1, 1 < 1 α β < 1,
(1 α β)
t
0 t ,
P (t)
1
α + β
·
β α
β α
¸
.
ξ
t
, t = 0, 1, 2, ...,
P = (p
ij
)
q = (q
1
, ..., q
N
).
P (ξ
s
= i), P (ξ
s
= i, ξ
t+s
= j).
P (ξ
s
= i) =
P
i
0
,...,i
s1
q
i
0
p
i
0
i
1
···p
i
s1
i
,
P (ξ
s
= i, ξ
t+s
= j) = P (ξ
s
= i)
P
i
1
,...,i
t1
p
ii
1
···p
i
t1
j
.
P (ξ
t+s
= j|ξ
s
= i) = P (ξ
t
= j|ξ
0
= i).
η
1
, η
2
, ...
f(x, y)
{1, ..., N}; x = 1, 2, ..., N,
y η
1
.
ξ
0
(P (ξ
0
= k) = p
(0)
k
), k = 0, 1, 2, ..., N,
ξ
t+1
= f(ξ
t
, η
t+1
), t = 0, 1, 2, ...,
                            µ  ·        ¸                 ·       ¸¶
                          1       β α       (1 − α − β)t     α −α
2) P (t+1) = P (t)P =                     +                          ·
                         α+β β α               α+β          −β  β
             µ       ·       ¸              ·            ¸¶
                 1      β α       1 − α − β −α       α
           ·                   +                            =
               α+β β α              α+β         β −β
                    ·       ¸                   ·           ¸
                1      β α       (1 − α − β)t+1     α −α
           =                  +                               .
              α+β β α                α+β          −β      β
Òàê êàê 0 < α < 1, 0 < β < 1, òî −1 < 1 − α − β < 1, çíà÷èò
(1 − α − β)t → 0 ïðè t → ∞, ïîýòîìó
                                  ·     ¸
                               1    β α
                      P (t) →             .
                              α+β β α

                        Çàäà÷è äîìàøíåãî çàäàíèÿ.
    Çàäà÷à 8.2. Ïóñòü ξt , t = 0, 1, 2, ...,  öåïü Ìàðêîâà ñ ìàòðè-
öåé âåðîÿòíîñòåé ïåðåõîäà P = (pij ) è íà÷àëüíûì ðàñïðåäåëåíèåì
ïî ñîñòîÿíèÿì q = (q1 , ..., qN ). Âû÷èñëèòü ñëåäóþùèå âåðîÿòíîñòè
P (ξs = i), P (ξs = i, ξt+s = j).
                                                         P
                              Îòâåò: P (ξs = i) =                qi0 pi0 i1 · · · pis−1 i ,
                                                    i0 ,...,is−1
                                                               P
                      P (ξs = i, ξt+s = j) = P (ξs = i)               pii1 · · · pit−1 j .
                                                                 i1 ,...,it−1

    Çàäà÷à 8.3. (Ïðîäîëæåíèå çàäà÷è 8.2). Äîêàçàòü, ÷òî
                     P (ξt+s = j|ξs = i) = P (ξt = j|ξ0 = i).

   Çàäà÷à 8.7. Ïóñòü η1 , η2 , ...  ïîñëåäîâàòåëüíîñòü íåçàâèñèìûõ
îäèíàêîâî ðàñïðåäåëåííûõ ñëó÷àéíûõ âåëè÷èí è f (x, y)  ôóíêöèÿ,
ïðèíèìàþùàÿ çíà÷åíèÿ â ìíîæåñòâå {1, ..., N }; x = 1, 2, ..., N, ìíî-
æåñòâî çíà÷åíèé y ñîâïàäàåò ñ ìíîæåñòâîì çíà÷åíèé η1 . ßâëÿåòñÿ
ëè ïîñëåäîâàòåëüíîñòü ñëó÷àéíûõ âåëè÷èí
                                          (0)
                     ξ0 (P (ξ0 = k) = pk ), k = 0, 1, 2, ..., N,

                         ξt+1 = f (ξt , ηt+1 ), t = 0, 1, 2, ...,
öåïüþ Ìàðêîâà.

                                           111