Теория вероятностей и математическая статистика. Билялов Р.Ф. - 12 стр.

UptoLike

Составители: 

n
A B
n m C n m+2
A = {(i
1
, ..., i
n
)
i
1
0 i
k
9, k = 2, ..., 9}. |A| = 5 ·10
n1
, || = 10
n
, P (A) =
0.5. B {(..., j
1
, ..., j
2
, ..., j
m
, ...) : j
k
{0, 3, 6, 9}, 1 k m,
|B| = 4
m
·6
nm
C
m
n
, 4
m
{(j
1
, j
2
, ..., j
m
)}, C
m
n
j
1
, j
2
, ..., j
m
6
nm
P (B) = (0.4)
m
·(0.6)
nm
·C
m
n
.
|C| = C
m
n2
· 4
m+2
· 6
nm2
.
P (C) = C
m
n2
· (0.4)
m+2
· (0.6)
nm2
.
N
M
N = 1000, M = 10.
A
k
P (A
k
) = C
M2
N2
/C
M
N
=
(N 2)!
(M 2)!(N M)!
:
N!
M!(N M)!
=
=
M(M 1)
N(N 1)
.
A
1
+A
2
+...+A
N1
P (A
1
+ A
2
) = P (A
1
) + P (A
2
) P (A
1
A
2
) P (A
1
) + P (A
2
),
P (A
1
+ A
2
+ ... + A
N1
) P (A
1
) + ... + P (A
N1
) = (N 1)P (A
1
) =
    Çàäà÷à 2.5. Âûïèñàíà ïîñëåäîâàòåëüíîñòü èç n ñëó÷àéíûõ ÷è-
ñåë. Íàéòè âåðîÿòíîñòü ñîáûòèé: A={1-å ÷èñëî  ÷åòíîå}, B ={ñðåäè
n ÷èñåë ðîâíî m äåëÿòñÿ íà 3}, C ={ñðåäè n ÷èñåë ðîâíî m+2 äåëÿò-
ñÿ íà 3, è äâà èç íèõ ðàñïîëîæåíû íà êîíöàõ ïîñëåäîâàòåëüíîñòè}.
    Ðåøåíèå. Èìååì óðíîâóþ ñõåìó ñ âîçâðàùåíèåì: A = {(i1 , ..., in ):
i1 ÷åòíîå, 0 ≤ ik ≤ 9, k = 2, ..., 9}. |A| = 5 · 10n−1 , |Ω| = 10n , P (A) =
0.5. B ={(..., j1 , ..., j2 , ..., jm , ...) : jk ∈ {0, 3, 6, 9}, 1 ≤ k ≤ m, îñòàëüíûå
÷èñëà íå äåëÿòñÿ íà 3}. |B| = 4m · 6n−m Cnm , ãäå 4m  ìîùíîñòü ìíî-
æåñòâà {(j1 , j2 , ..., jm )}, Cnm  ÷èñëî âñåâîçìîæíûõ âàðèàíòîâ ðàñ-
ïîëîæåíèÿ ÷èñåë j1 , j2 , ..., jm âî âñåé öèôðîâîé ïîñëåäîâàòåëüíîñòè,
6n−m  ìîùíîñòü ìíîæåñòâà öèôðîâûõ ïîñëåäîâàòåëüíîñòåé, ñîñòî-
ÿùèõ èç ÷èñåë, íå äåëÿùèõñÿ íà 3. P (B) = (0.4)m ·(0.6)n−m ·Cnm . Òðå-
òèé ñëó÷àé ñâîäèòñÿ êî âòîðîìó. Èìååì: |C| = Cn−2                   m · 4m+2 · 6n−m−2 .
           m
P (C) = Cn−2 · (0.4)      m+2     · (0.6)  n−m−2   .
    Çàäà÷à 2.9. Ïî íåêîòîðîìó ó÷àñòêó æåëåçíîé äîðîãè çà N èí-
òåðâàëîâ âðåìåíè ïðîõîäèò çàäàííîå êîëè÷åñòâî ïîåçäîâ, ñðåäè êîòî-
ðûõ M òÿæåëûõ. Êàæäûé èíòåðâàë âðåìåíè ìîæåò áûòü ñâîáîäåí
èëè çàíÿò îäíèì ïîåçäîì. Ëþáîå ðàñïîëîæåíèå òÿæåëûõ ïîåçäîâ
ïî èíòåðâàëàì âðåìåíè èìååò îäíó è òó æå âåðîÿòíîñòü. Ïðîõîæäå-
íèå òÿæåëûõ ïîåçäîâ â ñîñåäíèõ èíòåðâàëàõ âðåìåíè íåæåëàòåëüíî.
Îöåíèòü ñâåðõó âåðîÿòíîñòü ïîÿâëåíèÿ õîòÿ áû îäíîé ïàðû ñîñåäíèõ
èíòåðâàëîâ, çàíÿòûõ òÿæåëûìè ïîåçäàìè, åñëè N = 1000, M = 10.
    Ðåøåíèå. Ak ={ k-é è k+1-é èíòåðâàëû çàíÿòû òÿæåëûìè ïîåç-
äàìè},

                 M −2   M              (N − 2)!           N!
      P (Ak ) = CN −2 /CN =                         :             =
                                   (M − 2)!(N − M )! M !(N − M )!

                                      M (M − 1)
                                  =             .
                                      N (N − 1)
A1 +A2 +...+AN −1 ={ õîòÿ áû îäíà ïàðà ñîñåäíèõ èíòåðâàëîâ çàíÿòà
òÿæåëûìè ïîåçäàìè},

      P (A1 + A2 ) = P (A1 ) + P (A2 ) − P (A1 A2 ) ≤ P (A1 ) + P (A2 ),

P (A1 + A2 + ... + AN −1 ) ≤ P (A1 ) + ... + P (AN −1 ) = (N − 1)P (A1 ) =


                                          12