Теория вероятностей и математическая статистика. Билялов Р.Ф. - 120 стр.

UptoLike

Составители: 

P
k
(t) = P (ξ
t
=
k)
P
0
0
= µP
1
,
P
0
1
= (λ + µ)P
1
+ 2µP
2
,
P
2
= λP
1
2(λ + µ)P
2
+ 3µP
3
,
..........................
cov(ξ
t
, ξ
t+s
), ξ
t
λ ξ
t
a = 0.
ξ
t
, ξ
t+s
ξ
t
cov(ξ
t
, ξ
t+s
) = cov(ξ
t
, ξ
t+s
ξ
t
+ ξ
t
) = cov(ξ
t
, ξ
t
) =
= Dξ
t
=
½
λt
bt .
ν, η
1
, η
2
, ...
P (ν = k) = (λT )
k
e
λT
/k!; η
l
(1 = 1, 2, ...)
ξ
t
η
l
,
η
l
< t, l = 1, 2, ..., ν, ν > 0, ξ
t
= 0
ν = 0.
P (ξ
t
1
= k
1
, ξ
t
2
ξ
t
1
= k
2
k
1
, ξ
T
ξ
t
2
= k
3
k
2
).
ξ
t
ν, η
1
, η
2
, ....
P (ξ
t
1
= k
1
, ξ
t
2
ξ
t
1
= k
2
k
1
, ξ
T
ξ
t
2
= k
3
k
2
) =
= P (ξ
t
1
= k
1
, ξ
t
2
= k
2
, ξ
T
= k
3
) =
X
l=k
3
P (ν = l) · P (ξ
t
1
= k
1
|ν = l)·
·P (ξ
t
2
= k
2
|ν = l, ξ
t
1
= k
1
) · P (ξ
T
= k
3
|ν = l, ξ
t
1
= k
1
, ξ
t
2
= k
2
) =
X
l=k
3
(λT )
l
l!
e
λT
· C
k
1
l
µ
t
1
T
k
1
µ
T t
1
T
lk
1
· C
k
2
k
1
lk
1
µ
t
2
t
1
T t
1
k
2
k
1
·
Ñîîòâåòñòâóþùèå äèôôåðåíöèàëüíûå óðàâíåíèÿ äëÿ Pk (t) = P (ξt =
k) èìåþò âèä:

                      P00 = µP1 ,
                      P10 = −(λ + µ)P1 + 2µP2 ,
                      P2 = λP1 − 2(λ + µ)P2 + 3µP3 ,
                      ..........................

4.2.6     13-îå è 14-îå ïðàêòè÷åñêèå çàíÿòèÿ. Ýëåìåíòû òåî-
         ðèè ñëó÷àéíûõ ïðîöåññîâ
Çàäà÷à 10.1. Íàéòè cov(ξt , ξt+s ), åñëè: à) ξt  ïóàññîíîâñêèé ïðîöåññ
ñ ïàðàìåòðîì λ; á) ξt  âèíåðîâñêèé ïðîöåññ ñ a = 0.
   Ðåøåíèå. ξt , ξt+s − ξt íåçàâèñèìû, ïîýòîìó
          cov(ξt , ξt+s ) = cov(ξt , ξt+s − ξt + ξt ) = cov(ξt , ξt ) =
                                 ½
                                      λt â ñëó÷àå à),
                       = Dξt =
                                      bt â ñëó÷àå á).
   Çàäà÷à 10.3. Ïóñòü ν, η1 , η2 , ...  íåçàâèñèìûå ñëó÷àéíûå âåëè-
÷èíû: P (ν = k) = (λT )k e−λT /k!; âåëè÷èíû ηl (1 = 1, 2, ...) ðàâíîìåðíî
ðàñïðåäåëåíû íà îòðåçêå [0,Ò]. Îáîçíà÷èì ξt ÷èñëî âåëè÷èí ηl , óäî-
âëåòâîðÿþùèõ íåðàâåíñòâó ηl < t, l = 1, 2, ..., ν, åñëè ν > 0, è ξt = 0
ïðè ν = 0. Íàéòè âåðîÿòíîñòü

           P (ξt1 = k1 , ξt2 − ξt1 = k2 − k1 , ξT − ξt2 = k3 − k2 ).

   Ðåøåíèå. ξt − ôóíêöèÿ ñëó÷àéíûõ âåëè÷èí ν, η1 , η2 , ....
          P (ξt1 = k1 , ξt2 − ξt1 = k2 − k1 , ξT − ξt2 = k3 − k2 ) =
                                           ∞
                                           X
  = P (ξt1 = k1 , ξt2 = k2 , ξT = k3 ) =          P (ν = l) · P (ξt1 = k1 |ν = l)·
                                           l=k3

  ·P (ξt2 = k2 |ν = l, ξt1 = k1 ) · P (ξT = k3 |ν = l, ξt1 = k1 , ξt2 = k2 ) =
  X∞                      µ ¶k1 µ          ¶                µ          ¶k2 −k1
       (λT )l −λT      k 1 t1        T − t1 l−k1      k2 −k1 t2 − t1
             e     · Cl                           · Cl−k1                      ·
         l!                T            T                     T − t1
  l=k3


                                      120