Теория вероятностей и математическая статистика. Билялов Р.Ф. - 19 стр.

UptoLike

Составители: 

P (B|A) B
A
B A
A, B , P (A) 6= 0 P (B|A) =
P (AB)
P (A)
P (B|A) = P (B), B A
P (AB) = P (A)P (B|A) = P (A)P (B). P (A|B) = P (A),
A B. A B
P (AB) = P (A)P (B),
A B
P (AB) = P (A)P (B|A),
P (ABC) = P (A)P (B|A)P (C|AB),
P (ABCD) = P (A)P (B|A)P (C|AB)P (D|ABC).
A
1
, A
2
, ..., A
n
1 i
1
< ··· < i
k
n (k = 2, ..., n)
P (A
i
1
A
i
2
···A
i
k
) = P (A
i
1
)P (A
i
2
) ···P (A
i
k
).
A B
1
, ..., B
n
(B
i
) 6= 0, B
1
+ ··· + B
n
A.
P (A) =
n
X
i=1
P (B
i
)P (A|B
i
)
A = A
n
P
i=1
B
i
=
n
P
i=1
AB
i
, P (A) = P (
n
P
i=1
AB
i
) =
n
P
i=1
P (AB
i
) =
n
P
i=1
P (B
i
)P (A|B
i
).
2.2 Óñëîâíàÿ âåðîÿòíîñòü. Âåðîÿòíîñòü ïðîèçâåäåíèÿ
   P (B|A)  òàê îáîçíà÷àþò âåðîÿòíîñòü ñîáûòèÿ B ïðè óñëîâèè, ÷òî
ñîáûòèå A ïðîèçîøëî. Íàçîâ¼ì åãî óñëîâíîé âåðîÿòíîñòüþ ñîáûòèÿ
B ïðè óñëîâèè, ÷òî ñîáûòèå A ïðîèçîøëî.
    Îïðåäåëåíèå: ∀A, B ∈ A, P (A) 6= 0 ïîëàãàåòñÿ P (B|A) = PP(AB)
                                                                 (A) .
    Åñëè P (B|A) = P (B), òî ãîâîðÿò, ÷òî B íå çàâèñèò îò A. Íî åñëè
òàê, òî P (AB) = P (A)P (B|A) = P (A)P (B). Òîãäà P (A|B) = P (A),
ò.å. A òîæå íå çàâèñèò îò B. Ïîýòîìó ãîâîðÿò ïðîñòî, ÷òî A è B
íåçàâèñèìû. Çíà÷èò, åñëè P (AB) = P (A)P (B), òî ýòî åñòü íåîáõîäè-
ìîå è äîñòàòî÷íîå óñëîâèå òîãî, ÷òî A è B íåçàâèñèìû. Ôîðìóëû ñ
óñëîâíîé âåðîÿòíîñòüþ:

                                P (AB) = P (A)P (B|A),

                         P (ABC) = P (A)P (B|A)P (C|AB),
             P (ABCD) = P (A)P (B|A)P (C|AB)P (D|ABC).
      Îïðåäåëåíèå. Ñîáûòèÿ A1 , A2 , ..., An  íåçàâèñèìû, åñëè äëÿ
âñåõ êîìáèíàöèé èíäåêñîâ 1 ≤ i1 < · · · < ik ≤ n (k = 2, ..., n) èìååò
ìåñòî ñîîòíîøåíèå:

                 P (Ai1 Ai2 · · · Aik ) = P (Ai1 )P (Ai2 ) · · · P (Aik ).

      Ôîðìóëà ïîëíîé âåðîÿòíîñòè. Ôîðìóëà Áàéeñà.
      Òåîðåìà. Ïóñòü A  ïðîèçâîëüíîå ñîáûòèå, ñîáûòèÿ B1 , ..., Bn
 íåñîâìåñòíû ìåæäó ñîáîé, (Bi ) 6= 0, B1 + · · · + Bn ⊂ A. Òîãäà

                 n
                 X
       P (A) =         P (Bi )P (A|Bi ) − ôîðìóëà ïîëíîé âåðîÿòíîñòè.
                 i=1

                                        P
                                        n            P
                                                     n                         P
                                                                               n
      Äîêàçàòåëüñòâî. A = A                   Bi =         ABi , P (A) = P (       ABi ) =
                                        i=1          i=1                     i=1
P
n                  P
                   n
      P (ABi ) =         P (Bi )P (A|Bi ).
i=1                i=1




                                              19