Теория вероятностей и математическая статистика. Билялов Р.Ф. - 46 стр.

UptoLike

Составители: 

ξ
Mξ = 0 · q + 1 ·p = p.
x
k
= k, k = 0, 1, 2, ..., p
k
= P (ξ =
x
k
) =
λ
k
k!
e
λ
.
Mξ =
X
k=0
k
λ
k
k!
e
λ
= e
λ
X
k=1
k
λ
k
k!
=
X
k=1
λ
k
(k 1)!
= e
λ
λ
X
k=1
λ
k1
(k 1)!
=
= e
λ
λe
λ
= λ.
ξ [a, b],
[a, b]. x
0
= a < x
1
< ··· < x
n1
< x
n
= b
[a, b] n x
k
= x
k+1
x
k
, 0 k n 1.
P (x
k
ξ < x
k+1
) =
x
k+1
R
x
k
p(u)du p(x
k
)∆x
k
.
ξ
x
k
p(x
k
)∆x
k
Mξ Mξ
P
k
x
k
p(x
k
)∆x
k
,
n , x
k
0
b
R
a
xp(xdx)
Mξ
ξ
Mξ =
Z
−∞
xp(x)dx.
[a, b]
p(x) =
½
1
ba
, x [a, b]
0, x 6∈ [a, b]
,
   1) Ïóñòü ξ åñòü ñëó÷àéíàÿ âåëè÷èíà, ïðåäñòàâëÿþùàÿ ñëó÷àéíîå
÷èñëî óñïåõîâ ïðè îäíîêðàòíîì ïðîèçâîäñòâå îïûòà. Òîãäà

                        M ξ = 0 · q + 1 · p = p.

    2) Ðàñïðåäåëåíèå Ïóàññîíà: xk = k, k = 0, 1, 2, ..., pk = P (ξ =
         k
xk ) = λk! e−λ .
       ∞
       X             ∞
                     X        ∞
                              X                  ∞
                                                 X
          λk             λk        λk               λk−1
Mξ =     k e−λ = e−λ   k    =            = e−λ λ            =
          k!             k!     (k − 1)!           (k − 1)!
       k=0               k=1             k=1           k=1

                            = e−λ λeλ = λ.
     á) Ïóñòü ξ ðàñïðåäåëåíà íåïðåðûâíî íà ñåãìåíòå [a, b], ò.å. ÿâëÿ-
åòñÿ íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíîé, ïðèíèìàþùåé çíà÷åíèÿ â
ñåãìåíòå [a, b]. Òî÷êàìè x0 = a < x1 < · · · < xn−1 < xn = b ñåãìåíò
[a, b] ðàçäåëèì íà n ÷àñòåé. Ïóñòü ∆xk = xk+1 − xk , 0 ≤ k ≤ n − 1.
                              xR
                               k+1
Òîãäà P (xk ≤ ξ < xk+1 ) =         p(u)du ≈ p(xk )∆xk . Íåïðåðûâíóþ
                               xk
ñëó÷àéíóþ âåëè÷èíó ξ ðàññìîòðèì ïðèáëèæåííî êàê äèñêðåòíóþ
ñ âîçìîæíûìè çíà÷åíèÿìè xk è ñîîòâåòñòâóþùèìè âåðîÿòíîñòÿìè
p(xk )∆xk ïðèíÿòü ýòè çíà÷åíèÿ, òîãäà çà ïðèáëèæåííîå
                                                   Pçíà÷åíèå ìà-
òåìàòè÷åñêîãî îæèäàíèÿ M ξ ìîæíî ïðèíÿòü M ξ ≈        xk p(xk )∆xk ,
                                                       k
                                                       Rb
êîòîðîå ïðè n → ∞, ∆xk → 0 áóäåò ñòðåìèòüñÿ ê               xp(xdx) êàê
                                                       a
èíòåãðàëüíàÿ ñóììà, ïîýòîìó ìàòåìàòè÷åñêîå îæèäàíèå M ξ íåïðå-
ðûâíîé ñëó÷àéíîé âåëè÷èíû ξ îïðåäåëÿåòñÿ ñëåäóþùèì îáðàçîì:
                                    Z∞
                         Mξ =            xp(x)dx.
                                −∞

   Ïðèìåðû.
   1) Ðàâíîìåðíîå ðàñïðåäåëåíèå íà ñåãìåíòå [a, b]:
                           ½ 1
                    p(x) =   b−a , x ∈ [a, b] ,
                             0, x 6∈ [a, b]

                                    46