Теория вероятностей и математическая статистика. Билялов Р.Ф. - 47 стр.

UptoLike

Составители: 

Mξ =
Z
−∞
xp(x)dx =
b
Z
a
x
1
b a
dx =
1
b a
x
2
2
|
|
b
a
=
a + b
2
.
(a, σ
2
)
p(x) =
1
2πσ
2
e
(xa)
2
2σ
2
.
Mξ =
Z
−∞
xp(x)dx =
1
2πσ
2
Z
−∞
xe
(xa)
2
2σ
2
dx =
=
1
2πσ
2
Z
−∞
(a + σt)e
t
2
2
σdt =
a
2π
Z
−∞
e
t
2
2
dt +
σ
2π
Z
−∞
te
t
2
2
dt = a.
ξ = ϕ(η
1
, η
2
), (η
1
, η
2
)
(η
1
, η
2
) (x, y)
(x
k
, y
l
) P (η
1
= x
k
, η
2
= y
l
) = p
kl
ξ
ϕ(x
k
, y
l
), P (ξ = ϕ(x
k
, y
l
)) p
kl
.
Mξ =
X
k,l
ϕ(x
k
, y
l
)p
kl
.
M(ξ + η) =
X
k,l
(x
k
+ y
l
)p
kl
=
X
k,l
(x
k
+ y
l
)P (ξ = x
k
, η = y
l
) =
=
X
k,l
x
k
P (ξ = x
k
, η = y
l
) +
X
k,l
y
l
P (ξ = x
k
, η = y
l
) =
=
X
k
x
k
X
l
P (ξ = x
k
, η = y
l
) +
X
l
y
l
X
k
P (ξ = x
k
, η = y
l
) =
=
X
k
x
k
P (ξ = x
k
) +
X
l
y
l
P (η = y
l
) = Mξ + M η.
                   Z∞                         Zb                                              b
                                                        1        1 x2 |                                a+b
         Mξ =                xp(x)dx =             x       dx =                                   =        .
                                                       b−a      b−a 2 |                       a         2
                   −∞                         a

   2) Íîðìàëüíîå ðàñïðåäåëåíèå ñ ïàðàìåòðàìè (a, σ 2 ):
                                                1      (x−a)2
                                       p(x) = √      e− 2σ2 .
                                               2πσ 2
                                Z∞                                     Z∞
                                                            1                        (x−a)2
               Mξ =                  xp(x)dx = √                              xe−      2σ 2   dx =
                                                2πσ 2
                              −∞                                       −∞
              Z∞                                                 Z∞                               Z∞
     1                                  2
                                     − t2          a                          2
                                                                           − t2         σ                 t2
=√                 (a + σt)e                σdt = √                    e          dt + √               te− 2 dt = a.
  2πσ 2                                            2π                                   2π
              −∞                                                −∞                                −∞

    â) Ïóñòü ξ = ϕ(η1 , η2 ), ãäå (η1 , η2 )  äèñêðåòíûé ñëó÷àéíûé âåê-
òîð. Ýòî çíà÷èò, ÷òî (η1 , η2 ) íà ïëîñêîñòè (x, y) ïðîáåãàåò òî÷êè
(xk , yl ) è P (η1 = xk , η2 = yl ) = pkl , âîçìîæíûìè çíà÷åíèÿìè ξ áó-
äóò ϕ(xk , yl ), à âåðîÿòíîñòü P (ξ = ϕ(xk , yl )) ñíîâà áóäåò ðàâíà pkl .
Ìàòåìàòè÷åñêîå îæèäàíèå ôóíêöèè îò äèñêðåòíûõ ñëó÷àéíûõ âå-
ëè÷èí îïðåäåëÿåòñÿ ñëåäóþùèì îáðàçîì:
                                    X
                            Mξ =       ϕ(xk , yl )pkl .
                                                   k,l

   Ïðèìåð. Ìàòåìàòè÷åñêîå îæèäàíèå ñóììû äëÿ äèñêðåòíûõ
ñëó÷àéíûõ âåëè÷èí.
                X                 X
    M (ξ + η) =   (xk + yl )pkl =   (xk + yl )P (ξ = xk , η = yl ) =
                              k,l                          k,l
               X                                                X
          =          xk P (ξ = xk , η = yl ) +                         yl P (ξ = xk , η = yl ) =
               k,l                                               k,l
         X         X                                            X           X
     =        xk             P (ξ = xk , η = yl ) +                    yl          P (ξ = xk , η = yl ) =
          k              l                                        l           k
                   X                               X
              =              xk P (ξ = xk ) +              yl P (η = yl ) = M ξ + M η.
                     k                                 l


                                                           47