Теория вероятностей и математическая статистика. Билялов Р.Ф. - 49 стр.

UptoLike

Составители: 

MC = C, C
MCξ = CMξ
|Mξ| M|ξ|
M(ξ
1
+ ξ
2
) = Mξ
1
+ Mξ
2
M(ξ
1
ξ
2
) = Mξ
1
Mξ
2
, ξ
1
, ξ
2
(ξ
1
, ξ
2
)
M(ξ
1
ξ
2
) =
X
k,l
x
k
y
l
P (ξ
1
= x
k
, ξ
2
= y
l
) =
X
k,l
x
k
y
l
P (ξ
1
= x
k
)P (ξ
2
= y
l
) =
=
X
k
x
k
P (ξ
1
= x
k
)
X
l
y
l
P (ξ
2
= y
l
) = Mξ
1
Mξ
2
.
(ξ
1
, ξ
2
)
Dξ = M(ξ Mξ)
2
= M(ξ
2
2(Mξ)ξ + (Mξ)
2
) =
= Mξ
2
2(Mξ)Mξ + (Mξ)
2
= Mξ
2
(Mξ)
2
.
P (ξ = k) =
λ
k
k!
e
λ
.
ξ = λ. Mξ
2
.
Mξ
2
=
X
k=0
x
2
k
p
k
=
X
k=0
k
2
λ
k
k!
e
λ
= e
λ
X
k=0
k
2
λ
k
k!
= e
λ
X
k=1
k
λ
k
(k 1)!
=
= e
λ
X
l=0
(l + 1)λ
l+1
l!
= λe
λ
(
X
l=1
λ
l
(l 1)!
+
X
l=0
λ
l
l!
) = λe
λ
(λe
λ
+ e
λ
) =
= λ
2
+ λ.
Dξ = Mξ
2
(Mξ)
2
= λ
2
+ λ λ
2
= λ.
   1) M C = C, C − ïîñòîÿííàÿ,
   2) M Cξ = CM ξ ,
   3)|M ξ| ≤ M |ξ|,
   4) M (ξ1 + ξ2 ) = M ξ1 + M ξ2 ,
   5) M (ξ1 ξ2 ) = M ξ1 M ξ2 , åñëè ξ1 , ξ2 íåçàâèñèìû.
Äîêàæåì ïîñëåäíåå ñâîéñòâî â ïðåäïîëîæåíèè, ÷òî (ξ1 , ξ2 )  äèñ-
êðåòíûé âåêòîð:
             X                                  X
M (ξ1 ξ2 ) =     xk yl P (ξ1 = xk , ξ2 = yl ) =   xk yl P (ξ1 = xk )P (ξ2 = yl ) =
               k,l                                     k,l
                     X                      X
              =           xk P (ξ1 = xk )       yl P (ξ2 = yl ) = M ξ1 M ξ2 .
                     k                      l

 ñëó÷àå íåïðåðûâíîãî ñëó÷àéíîãî âåêòîðà (ξ1 , ξ2 ) ïðè äîêàçàòåëü-
ñòâå ñâîéñòâà 5) âìåñòî ñóìì íóæíî èñïîëüçîâàòü èíòåãðàëû.
   Äèñïåðñèÿ  ýòî ñðåäíåå çíà÷åíèå êâàäðàòà îòêëîíåíèÿ ñëó-
÷àéíîé âåëè÷èíû îò å¼ ñðåäíåãî çíà÷åíèÿ.

              Dξ = M (ξ − M ξ)2 = M (ξ 2 − 2(M ξ)ξ + (M ξ)2 ) =

               = M ξ 2 − 2(M ξ)M ξ + (M ξ)2 = M ξ 2 − (M ξ)2 .
Ïðèìåðû.
                                                             λk −λ
   1) Ðàñïðåäåëåíèå Ïóàññîíà: P (ξ = k) =                    k! e  .   Ìû óæå ïîëó÷èëè
ðàíåå, ÷òî ξ = λ. Âû÷èñëèì òåïåðü M ξ 2 .
         ∞
         X                  ∞
                            X                     X λk∞        X         ∞
                                       λk −λ                          λk
M ξ2 =         x2k pk =           k2      e = e−λ  k2    = e−λ   k          =
                                       k!             k!           (k − 1)!
         k=0                k=0                      k=0                 k=1

        ∞
        X                             X∞                     ∞
                                                           X λl
          (l + 1)λl+1                              λl
= e−λ                         = λe−λ (                   +      ) = λe−λ (λeλ + eλ ) =
                     l!                         (l − 1)!     l!
        l=0                               l=1                l=0
                                                2
                                           = λ + λ.


                      Dξ = M ξ 2 − (M ξ)2 = λ2 + λ − λ2 = λ.



                                                49