Теория вероятностей и математическая статистика. Билялов Р.Ф. - 86 стр.

UptoLike

Составители: 

m
k
np
k
np
k
q
k
(q
k
= 1 p
k
)
η
k
=
m
k
np
k
np
k
(0, q
k
).
r+1
P
k=1
p
k
η
k
=
1
n
(
r+1
P
k=1
m
k
n
r+1
P
k=1
p
k
) =
1
n
(n n) = 0 r
n
r+1
P
k=1
η
2
k
χ
2
r
. n
r+1
P
k=1
(m
k
np
k
)
2
np
k
χ
2
r
χ
2
α α = 0.05
χ
2
r,α
P (χ
2
r
> χ
2
r,α
) = α. χ
2
r,
=
r+1
P
k=1
(m
k
np
k
)
2
np
k
.
p
k
, F (x), χ
2
r,
χ
2
r,
< χ
2
r,α
,
F (x)
χ
2
r,
> χ
2
r,α
, F (x)
n = 4040 m
1
= 2048, m
2
=
1992
p = q =
1
2
.
ξ F (x) = 0, x 0; F (x) =
1/2, 0 < x 1; F (x) = 1, 1 < x.
z
1
= 1/2.
b b b
z
1
= 1/2
r = 1, α = 0.05, χ
2
1,0.05
= 3.84.
χ
2
1,
=
r+1
X
k=1
(m
k
np
k
)
2
np
k
=
(2048 2020)
2
4040 · 1/2
+
(1992 2020)
2
4040 · 1/2
= 0.78.
χ
2
1,
< χ
2
1,0.05
,
ïî òåîðåìå Áåðíóëëè. Ïî èíòåãðàëüíîé òåîðåìå Ìóàâðà  Ëàïëà-
ñà âåëè÷èíà m
            √k −npk (qk = 1 − pk )  àñèìïòîòè÷åñêè íîðìàëüíà ñ
              npk qk
ïàðàìåòðàìè (0,1), à âåëè÷èíà ηk = m√k −np
                                       npk  àñèìïòîòè÷åñêè íîð-
                                           k


                                  P√
                                  r+1               P
                                                    r+1       P
                                                              r+1
ìàëüíà ñ ïàðàìåòðàìè (0, qk ). Íî     pk ηk = √1n (     mk −n     pk ) =
                                        k=1                    k=1         k=1
√1 (n− n) = 0. Çíà÷èò, íåçàâèñèìûõ âåëè÷èí  r øòóê. Ìîæíî ïî-
  n
                                P 2
                                r+1
êàçàòü, ÷òî ïðè áîëüøèõ n ñóììà     ηk ïîä÷èíÿåòñÿ ðàñïðåäåëåíèþ
                                         k=1
                                          P
                                          r+1
                                                (mk −npk )2
χ2r .   Çíà÷èò, ïðè áîëüøèõ n ñóììà                npk        ïîä÷èíÿåòñÿ ðàñïðå-
                                         k=1
äåëåíèþ χ2 ñ r ñòåïåíÿìè ñâîáîäû.  èòîãå ïîëó÷àåì
     Êðèòåðèé χ2 : Ïî òàáëèöàì ïî α (íàïðèìåð, α = 0.05) íàõîäèì
                                                           P (mk −npk )2
                                                           r+1
χ2r,α òàêîå, ÷òî P (χ2r > χ2r,α ) = α. Âû÷èñëÿåì χ2r,âû÷ =      npk      .
                                                                     k=1
Åñëè pk , à çíà÷èò, è F (x), óãàäàíû ïðàâèëüíî, òî χ2r,âû÷ äîëæíî
áûòü íåáîëüøèì. Åñëè χ2r,âû÷ < χ2r,α , òî ñ÷èòàåòñÿ, ÷òî ãèïîòåçà
î F (x) íå ïðîòèâîðå÷èò îïûòó. Åñëè æå ñëó÷èëîñü ìàëîâåðîÿòíîå
χ2r,âû÷ > χ2r,α , òî ñ÷èòàåòñÿ, ÷òî ãèïîòåçà î F (x) íåïðàâèëüíà.
     Íîâûé àíàëèç îïûòà Áþôôîíà. Â îïûòå Áþôôîíà ìîíåòà áûëà
áðîøåíà n = 4040 ðàç, ÷èñëî âûïàäåíèé ãåðáà ðàâíî m1 = 2048, m2 =
1992 − ÷èñëî âûïàäåíèé ðåøåòêè. Ãèïîòåçà: âåðîÿòíîñòè âûïàäåíèé
ãåðáà è ðåøåòêè ðàâíû ìåæäó ñîáîé è èìåþò çíà÷åíèÿ p = q =
1
2 . Îïûòó ñ áðîñàíèåì ìîíåòû ñîïîñòàâëÿåì äèñêðåòíóþ ñëó÷àéíóþ
âåëè÷èíó ξ ñ ôóíêöèåé ðàñïðåäåëåíèÿ: F (x) = 0, åñëè x ≤ 0; F (x) =
1/2, åñëè 0 < x ≤ 1; F (x) = 1, åñëè 1 < x. ×èñëîâóþ ïðÿìóþ äåëèì
íà äâå ÷àñòè ñ ïîìîùüþ òî÷êè z1 = 1/2.
       0b     z1 = 1/2
                   b
                         1b       r = 1, α = 0.05, χ2    = 3.84. Âû-
                                                                1,0.05
÷èñëÿåì
             r+1
             X   (mk − npk )2       (2048 − 2020)2 (1992 − 2020)2
 χ21,âû÷ =                      =                 +               = 0.78.
                     npk              4040 · 1/2     4040 · 1/2
             k=1

Âèäèì, ÷òî χ21,âû÷ < χ21,0.05 , ïîýòîìó ìîæíî ñ÷èòàòü, ÷òî ãèïîòåçà íå
ïðîòèâîðå÷èò ýêñïåðèìåíòó.


                                        86