ВУЗ:
Составители:
Рубрика:
177
Частота признака
x
m
- величина, показывающая, сколько раз
встречается то или иное значение признака.
Относительная частота
x
w
- отношение частоты
x
m
к
общему объему выборки
n
:
x
xx
x
m
m
n
m
Оценка
(х)
Количество
студентов
(частота
x
m
)
Доля
студентов
(относительная
частота
x
)
Накопленная
частота
нак
x
m
Накопленная
относительная
частота
нак
x
2
3
4
5
6
20
40
34
0,06
0,2
0,4
0,34
6
26
66
100
0,06
026
0,66
1
Итого
100
1,0
-
-
Наряду с понятиями частоты и относительной частоты, в
математической статистике рассматриваются понятия
накопленной частоты
нак
x
m
и накопленной относительной
частоты
нак
x
которые показывают, во скольких наблюдениях
признак принял значения не больше заданного значения
x
:
x
нак
x
mm
,
n
m
нак
x
нак
x
В случае непрерывной случайной величины рассматривают
не дискретные значения признака, а их значения в пределах
определенного интервала. В качестве частоты при таком
подходе выступает количество случаев, в которых признак
принял значения, входящие в некоторый интервал.
Такую величину называют интервальной частотой и
обозначают т
h
(соответственно рассматривается также и
интервальная относительная частота
h
w
). Полученный таким
образом ряд называют интервальным вариационным рядом.
Частота признака m x - величина, показывающая, сколько раз
встречается то или иное значение признака.
Относительная частота wx - отношение частоты m x к
общему объему выборки n :
mx mx
x
n mx
Доля Накопленная
Количество Накопленная
Оценка студентов относительная
студентов
(х) (относительная частота m нак нак
(частота m x )
частота x )
x частота x
2 6 0,06 6 0,06
3 20 0,2 26 026
4 40 0,4 66 0,66
5 34 0,34 100 1
Итого 100 1,0 - -
Наряду с понятиями частоты и относительной частоты, в
математической статистике рассматриваются понятия
нак
накопленной частоты m x и накопленной относительной
частоты нак
x которые показывают, во скольких наблюдениях
признак принял значения не больше заданного значения x :
m xнак
m xнак m x , нак
x
n
В случае непрерывной случайной величины рассматривают
не дискретные значения признака, а их значения в пределах
определенного интервала. В качестве частоты при таком
подходе выступает количество случаев, в которых признак
принял значения, входящие в некоторый интервал.
Такую величину называют интервальной частотой и
обозначают тh (соответственно рассматривается также и
интервальная относительная частота wh ). Полученный таким
образом ряд называют интервальным вариационным рядом.
177
Страницы
- « первая
- ‹ предыдущая
- …
- 175
- 176
- 177
- 178
- 179
- …
- следующая ›
- последняя »
