Расчетно-графические работы по кинематике. Божкова Л.В - 9 стр.

UptoLike

9
вар.
рис.
Уравнение вращательного
движения
ϕ = ϕ (t) (рад)
Уравнение
движения точки М
OM = S = f (t) (см)
t
1
(сек)
R
(см)
a
(см)
282.4
0,6 πt
2
π(10t – 2t
2
)
116-
292.5
sin(πt/3)
1 – 2t
2
1-2
302.6 2t
4 cos(πt/3)
1-4
Пример выполнения задания К-2
Диск радиуса R = 0,5 м вращается вокруг своего вертикального
диаметра OB (рис.2.7) по закону ϕ = t
3
- 2t
2
(ϕ измеряется в радианах, t - в
секундах; положительное направление отсчета угла ϕ показано на рисунке
дуговой стрелкой). По ободу диска движется точка M по закону
(
)
2
27
6
tt
R
MOS ==
π
(
м. (положительное и отрицательное направления
отсчета дуговых координат S от точки O указаны соответственно знаками
плюс (+) и минус (-)). Определить абсолютную скорость и абсолютное
ускорение точки M в момент времени t
1
=1 секунда.
Решение. Для определенности свяжем жестко с диском систему
координат O
1
xyz (координатная плоскость O
1
yz совмещена с плоскостью
диска). Движение точки М рассматриваем как сложное. Вращение диска
(подвижной системы координат O
1
xyz ) вокруг вертикальной неподвижной
оси O
3
z
1
считаем переносным. При этом движение точки М по ободу диска
будет относительным. Рассмотрим более полно эти движения.
1. Закон переносного вращательного движения задан уравнением
ϕ = t
3
- 2t
2
.(1)
Определим угловую скорость и угловое ускорение переносного
вращения как алгебраические величины:
tt
e
43
2
== ϕω
&
;
46
=
=
t
ee
ω
&
.
В момент времени t
1
= 1 сек.
ω
e
=-1 c
-1
; ε
e
= 2 c
-2
.(2)
Знак угловой скорости определяет направление вращения тела вокруг
неподвижной оси. В рассматриваемом случае ω
e
<О. Это означает, что
вращение в момент времени t
1
= 1 сек. происходит в направлении убывания
угла ϕ (то есть в отрицательном направлении отсчета ϕ ). Путем
сопоставления знаков угловой скорости и углового ускорения можно
установить характер вращательного движения, то есть является оно
ускоренным или замедленным. В рассматриваемом случае, как следует из (2),
знаки угловой скорости и углового ускорения разные (ω
e
<0 , ε
e
>0). Это
                                                                           9
 № № Уравнение вращательного            Уравнение            t1    R    a
вар. рис.    движения                движения точки М      (сек) (см) (см)
          ϕ = ϕ (t) (рад)            OM = S = f (t) (см)
 28 2.4        0,6 πt2                  π(10t – 2t2)        1    16    -
 29 2.5       sin(πt/3)                   1 – 2t2           1     -    2
 30 2.6          2t                     4 cos(πt/3)         1     -    4


                    Пример выполнения задания К-2

      Диск радиуса R = 0,5 м вращается вокруг своего вертикального
диаметра OB (рис.2.7) по закону ϕ = t3- 2t2 (ϕ измеряется в радианах, t - в
секундах; положительное направление отсчета угла ϕ показано на рисунке
дуговой стрелкой). По ободу диска движется точка M по закону
      ( πR
S = OM =
           6
             (      )
             7t − 2t 2 м. (положительное и отрицательное направления
отсчета дуговых координат S от точки O указаны соответственно знаками
плюс (+) и минус (-)). Определить абсолютную скорость и абсолютное
ускорение точки M в момент времени t1=1 секунда.

      Решение. Для определенности свяжем жестко с диском систему
координат O1xyz (координатная плоскость O1yz совмещена с плоскостью
диска). Движение точки М рассматриваем как сложное. Вращение диска
(подвижной системы координат O1xyz ) вокруг вертикальной неподвижной
оси O3z1 считаем переносным. При этом движение точки М по ободу диска
будет относительным. Рассмотрим более полно эти движения.
      1. Закон переносного вращательного движения задан уравнением
                                 ϕ = t3- 2t2 .                        (1)
      Определим угловую скорость и угловое ускорение переносного
вращения как алгебраические величины:
                             ω e = ϕ& = 3t 2 − 4t        ;
                             ε e = ω& e = 6t − 4         .
      В момент времени t1= 1 сек.
                     ωe=-1 c-1      ;          εe= 2 c-2   .          (2)
      Знак угловой скорости определяет направление вращения тела вокруг
неподвижной оси. В рассматриваемом случае ωe<О. Это означает, что
вращение в момент времени t1= 1 сек. происходит в направлении убывания
угла ϕ (то есть в отрицательном направлении отсчета ϕ ). Путем
сопоставления знаков угловой скорости и углового ускорения можно
установить характер вращательного движения, то есть является оно
ускоренным или замедленным. В рассматриваемом случае, как следует из (2),
знаки угловой скорости и углового ускорения разные (ωe<0 , εe>0). Это