Составители:
Рубрика:
f(x) f p
f(x) ≈ p(x) =
N
X
j=0
L
j
(x)f(x
j
) , L
j
(x) =
N
Y
k6=j,k=0
(x − x
k
)
(x
j
− x
k
)
,
J =
b
Z
a
p(x)e
iω x
dx =
N
X
j=0
f(x
j
)
b
Z
a
e
iωx
L
j
(x)dx =
N
X
j=0
A
j
(ω)f(x
j
) .
A
j
(ω) =
b
R
a
e
iω x
L
j
(x)dx
I =
b
Z
a
f(x)e
iω x
dx ≈
N
X
j=0
A
j
(ω)f(x
j
) .
1
R
−1
sin ωxf(x)dx
1
R
−1
cos ωxf(x)dx
x
0
= 1 , x
1
= 0 , x
2
= 1
[a, b] N a = x
0
< x
1
< . . . < x
N
= b [x
k−1
, x
k
]
f(x) p
k
I =
b
Z
a
f(x)e
iωx
dx =
N
X
k=1
x
k
Z
x
k−1
f(x)e
iω x
dx ∼ J =
N
X
k=1
x
k
Z
x
k−1
p
k
(x)e
iωx
dx .
x
k
Z
x
k−1
f(x)e
iωx
dx ∼
x
k
Z
x
k−1
f(¯x)e
iωx
dx =
= f(¯x
k
)
e
iωx
k
− e
iω x
k−1
iω
=
2
ω
f(¯x
k
)e
iω¯x
k
sin
ωh
k
2
.
f(x) f(x) ≈ f(¯x
k
) + f
0
(¯x
k
)(x − ¯x
k
)
R
R =
x
N
Z
x
0
r(x)e
iωx
dx ≈
N
X
k=1
f
0
(¯x
k
)
x
k
Z
x
k−1
(x − ¯x
k
)e
iωx
dx =
=
2i
ω
2
N
X
k=1
f
0
(¯x
k
)
µ
sin
ωh
k
2
−
ωh
k
2
cos
ωh
k
2
¶
e
iω¯x
k
,
ωh
k
Страницы
- « первая
- ‹ предыдущая
- …
- 47
- 48
- 49
- 50
- 51
- …
- следующая ›
- последняя »