ВУЗ:
Составители:
Рубрика:
32
'
– ɢɡɦɟɧɟɧɢɟ ɞɥɢɧɵ ɩɪɭɠɢɧɵ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɟɟ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɣ
ɞɥɢɧɨɣ;
ɞɥɹ ɫɩɢɪɚɥɶɧɨɣ ɩɪɭɠɢɧɵ:
c – ɠɟɫɬɤɨɫɬɶ, ɪɚɜɧɚɹ ɜɟɥɢɱɢɧɟ ɦɨɦɟɧɬɚ ɫɢɥɵ, ɜɵɡɵɜɚɸɳɟɝɨ
ɡɚɤɪɭɱɢɜɚɧɢɟ ɩɪɭɠɢɧɵ ɧɚ 1 ɪɚɞɢɚɧ;
'
– ɭɝɨɥ ɡɚɤɪɭɱɢɜɚɧɢɹ ɨɬ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ.
ɉɪɢɪɚɳɟɧɢɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɫɢɫɬɟɦɵ ɩɪɢ ɩɟɪɟɦɟɳɟɧɢɢ ɟɟ ɢɡ
ɨɞɧɨɝɨ ɩɨɥɨɠɟɧɢɹ ɜ ɞɪɭɝɨɟ ɪɚɜɧɨ ɫɭɦɦɟ ɪɚɛɨɬ, ɩɪɨɢɡɜɟɞɟɧɧɵɯ ɧɚ ɷɬɨɦ
ɩɟɪɟɦɟɳɟɧɢɢ ɜɫɟɦɢ ɫɢɥɚɦɢ, ɩɪɢɥɨɠɟɧɧɵɦɢ ɤ ɫɢɫɬɟɦɟ, ɬ.ɟ.
T
2
– T
1
= A
12
.
ȿɫɥɢ ɫɢɫɬɟɦɚ ɧɟɢɡɦɟɧɹɟɦɚɹ, ɬɨ
)(
1212
e
ATT
, ɝɞɟ
)(
12
e
A
– ɫɭɦɦɚ ɪɚɛɨɬ ɜɧɟɲɧɢɯ ɫɢɥ.
ɉɪɨɢɡɜɨɞɧɚɹ ɨɬ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɫɢɫɬɟɦɵ ɪɚɜɧɚ ɫɭɦɦɟ
ɦɨɳɧɨɫɬɟɣ ɜɫɟɯ ɫɢɥ, ɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɷɬɭ ɫɢɫɬɟɦɭ, ɬ.ɟ.
N
dt
dT
.
ȿɫɥɢ ɫɢɫɬɟɦɚ ɞɜɢɠɟɬɫɹ ɜ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɫɢɥɨɜɨɦ ɩɨɥɟ, ɬɨ ɩɨɥɧɚɹ
ɦɟɯɚɧɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ, ɪɚɜɧɚɹ ɫɭɦɦɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɢ ɩɨɬɟɧɰɢɚɥɶɧɨɣ
ɷɧɟɪɝɢɣ, ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ, ɬ. ɟ. Ɍ + ɉ = const.
Ɂɚɞɚɱɚ ʋ 1. Ƚɪɭɡ Ɇ ɦɚɫɫɨɣ m
ɩɨɦɟɳɟɧ ɧɚ ɧɟɝɥɚɞɤɭɸ ɧɚɤɥɨɧɧɭɸ
ɩɥɨɫɤɨɫɬɶ, ɨɛɪɚɡɭɸɳɭɸ ɫ
ɝɨɪɢɡɨɧɬɨɦ ɭɝɨɥ
D
, ɢ ɩɪɢɤɪɟɩɥɟɧ
ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ ɫ ɠɟɫɬɤɨɫɬɶɸ
ɫ, ɞɪɭɝɨɣ ɤɨɧɟɰ ɤɨɬɨɪɨɣ ɡɚɤɪɟɩɥɟɧ
ɧɟɩɨɞɜɢɠɧɨ. Ɉɩɪɟɞɟɥɢɬɶ
ɦɚɤɫɢɦɚɥɶɧɨɟ ɪɚɫɬɹɠɟɧɢɟ S
ɩɪɭɠɢɧɵ, ɟɫɥɢ ɜ ɧɚɱɚɥɶɧɵɣ
ɦɨɦɟɧɬ ɩɪɭɠɢɧɚ ɛɵɥɚ
ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɚ, ɚ ɝɪɭɡ ɨɬɩɭɳɟɧ
ɛɟɡ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ.
Ʉɨɷɮɮɢɰɢɟɧɬ ɬɪɟɧɢɹ ɬɟɥɚ ɨ
ɩɥɨɫɤɨɫɬɶ ɪɚɜɟɧ f, ɩɪɢɱɟɦ
.
D
tgf
Ɋɟɲɟɧɢɟ. ɂɦɟɟɦ: ɧɚ ɝɪɭɡ Ɇ ɞɟɣɫɬɜɭɟɬ ɜɟɫ
P
, ɭɩɪɭɝɚɹ ɫɢɥɚ
F
,
ɧɨɪɦɚɥɶɧɚɹ ɪɟɚɤɰɢɹ ɩɥɨɫɤɨɫɬɢ
N
ɢ ɫɢɥɚ ɬɪɟɧɢɹ
ɬɪ
F
, ɧɚɩɪɚɜɥɟɧɧɚɹ ɤɚɤ
F
.
ɂɡɦɟɧɟɧɢɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɪɚɜɧɨ ɪɚɛɨɬɟ ɫɢɥ, ɩɪɢɥɨɠɟɧɧɵɯ ɤ
ɫɢɫɬɟɦɟ:
¦
)(
1212
FATT
. Ɍɚɤ ɤɚɤ
,0
21
vv
ɬɨ
0
21
TT
,
ɫɥɟɞɨɜɚɬɟɥɶɧɨ,
,0
12
A
ɬ. ɟ.
0)()()()(
1212121212
NAFAFAPAA
ɬɪ
.
Ɂɞɟɫɶ
D
cosfPF
ɬɪ
,
cxF
,
.mgP
' – ɢɡɦɟɧɟɧɢɟ ɞɥɢɧɵ ɩɪɭɠɢɧɵ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɟɟ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɣ ɞɥɢɧɨɣ; ɞɥɹ ɫɩɢɪɚɥɶɧɨɣ ɩɪɭɠɢɧɵ: c – ɠɟɫɬɤɨɫɬɶ, ɪɚɜɧɚɹ ɜɟɥɢɱɢɧɟ ɦɨɦɟɧɬɚ ɫɢɥɵ, ɜɵɡɵɜɚɸɳɟɝɨ ɡɚɤɪɭɱɢɜɚɧɢɟ ɩɪɭɠɢɧɵ ɧɚ 1 ɪɚɞɢɚɧ; ' – ɭɝɨɥ ɡɚɤɪɭɱɢɜɚɧɢɹ ɨɬ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ. ɉɪɢɪɚɳɟɧɢɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɫɢɫɬɟɦɵ ɩɪɢ ɩɟɪɟɦɟɳɟɧɢɢ ɟɟ ɢɡ ɨɞɧɨɝɨ ɩɨɥɨɠɟɧɢɹ ɜ ɞɪɭɝɨɟ ɪɚɜɧɨ ɫɭɦɦɟ ɪɚɛɨɬ, ɩɪɨɢɡɜɟɞɟɧɧɵɯ ɧɚ ɷɬɨɦ ɩɟɪɟɦɟɳɟɧɢɢ ɜɫɟɦɢ ɫɢɥɚɦɢ, ɩɪɢɥɨɠɟɧɧɵɦɢ ɤ ɫɢɫɬɟɦɟ, ɬ.ɟ. T2 – T1 = A12. ȿɫɥɢ ɫɢɫɬɟɦɚ ɧɟɢɡɦɟɧɹɟɦɚɹ, ɬɨ T2 T1 A12( e ) , ɝɞɟ A12( e ) – ɫɭɦɦɚ ɪɚɛɨɬ ɜɧɟɲɧɢɯ ɫɢɥ. ɉɪɨɢɡɜɨɞɧɚɹ ɨɬ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɫɢɫɬɟɦɵ ɪɚɜɧɚ ɫɭɦɦɟ dT ɦɨɳɧɨɫɬɟɣ ɜɫɟɯ ɫɢɥ, ɞɟɣɫɬɜɭɸɳɢɯ ɧɚ ɷɬɭ ɫɢɫɬɟɦɭ, ɬ.ɟ. N. dt ȿɫɥɢ ɫɢɫɬɟɦɚ ɞɜɢɠɟɬɫɹ ɜ ɩɨɬɟɧɰɢɚɥɶɧɨɦ ɫɢɥɨɜɨɦ ɩɨɥɟ, ɬɨ ɩɨɥɧɚɹ ɦɟɯɚɧɢɱɟɫɤɚɹ ɷɧɟɪɝɢɹ, ɪɚɜɧɚɹ ɫɭɦɦɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɢ ɩɨɬɟɧɰɢɚɥɶɧɨɣ ɷɧɟɪɝɢɣ, ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ, ɬ. ɟ. Ɍ + ɉ = const. Ɂɚɞɚɱɚ ʋ 1. Ƚɪɭɡ Ɇ ɦɚɫɫɨɣ m ɩɨɦɟɳɟɧ ɧɚ ɧɟɝɥɚɞɤɭɸ ɧɚɤɥɨɧɧɭɸ ɩɥɨɫɤɨɫɬɶ, ɨɛɪɚɡɭɸɳɭɸ ɫ ɝɨɪɢɡɨɧɬɨɦ ɭɝɨɥ D , ɢ ɩɪɢɤɪɟɩɥɟɧ ɤ ɤɨɧɰɭ ɩɪɭɠɢɧɵ ɫ ɠɟɫɬɤɨɫɬɶɸ ɫ, ɞɪɭɝɨɣ ɤɨɧɟɰ ɤɨɬɨɪɨɣ ɡɚɤɪɟɩɥɟɧ ɧɟɩɨɞɜɢɠɧɨ. Ɉɩɪɟɞɟɥɢɬɶ ɦɚɤɫɢɦɚɥɶɧɨɟ ɪɚɫɬɹɠɟɧɢɟ S ɩɪɭɠɢɧɵ, ɟɫɥɢ ɜ ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɩɪɭɠɢɧɚ ɛɵɥɚ ɧɟɞɟɮɨɪɦɢɪɨɜɚɧɚ, ɚ ɝɪɭɡ ɨɬɩɭɳɟɧ ɛɟɡ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ. Ʉɨɷɮɮɢɰɢɟɧɬ ɬɪɟɧɢɹ ɬɟɥɚ ɨ ɩɥɨɫɤɨɫɬɶ ɪɚɜɟɧ f, ɩɪɢɱɟɦ f tgD . Ɋɟɲɟɧɢɟ. ɂɦɟɟɦ: ɧɚ ɝɪɭɡ Ɇ ɞɟɣɫɬɜɭɟɬ ɜɟɫ P , ɭɩɪɭɝɚɹ ɫɢɥɚ F , ɧɨɪɦɚɥɶɧɚɹ ɪɟɚɤɰɢɹ ɩɥɨɫɤɨɫɬɢ N ɢ ɫɢɥɚ ɬɪɟɧɢɹ Fɬɪ , ɧɚɩɪɚɜɥɟɧɧɚɹ ɤɚɤ F . ɂɡɦɟɧɟɧɢɟ ɤɢɧɟɬɢɱɟɫɤɨɣ ɷɧɟɪɝɢɢ ɪɚɜɧɨ ɪɚɛɨɬɟ ɫɢɥ, ɩɪɢɥɨɠɟɧɧɵɯ ɤ ɫɢɫɬɟɦɟ: T2 T1 ¦A12 ( F ) . Ɍɚɤ ɤɚɤ v1 v 2 0, ɬɨ T1 T2 0 , ɫɥɟɞɨɜɚɬɟɥɶɧɨ, A12 0, ɬ. ɟ. A12 A12 ( P ) A12 ( Fɬɪ ) A12 ( F ) A12 ( N ) 0. Ɂɞɟɫɶ Fɬɪ fP cos D , F cx , P mg. 32
Страницы
- « первая
- ‹ предыдущая
- …
- 30
- 31
- 32
- 33
- 34
- …
- следующая ›
- последняя »