Математическое моделирование при трех уровнях факторов по программам на языках Бейсик и Турбо Паскаль. Черный А.А. - 17 стр.

UptoLike

Составители: 

17
;
)xx(
yxx
b
N
u
u,r
u,n
u
N
u
u,ru,n
r,n
=
=
=
1
2
3
2
1
32
32
;
)xx(
yxx
b
N
u
u,r
u,n
u
N
u
u,ru,n
r,n
=
=
=
1
2
1
3
1
13
13
;
)xx(
yxx
b
N
u
u,r
u,n
u
N
u
u,ru,n
r,n
=
=
=
1
2
2
3
1
23
23
;
)xxx(
yxxx
b
N
u
u,ru,n
u,n
uu,ru,n
N
u
u,n
r,n,n
=
=
=
1
2
32
1
32
1
1
321
;
)xxx(
yxxx
b
N
u
u,ru,n
u,n
uu,r
N
u
u,nu,n
r,n,n
=
=
=
1
2
23
1
2
1
31
231
;
)xxx(
yxxx
b
N
u
u,ru,n
u,n
uu,r
N
u
u,nu,n
r,n,n
=
=
=
1
2
13
2
1
1
32
132
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
=
=
=
1
2
2
1
1
21
21
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
=
=
=
1
2
3
1
1
31
31
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
=
=
=
1
2
3
2
1
32
32
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
=
=
=
1
2
32
1
3
1
21
321
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
=
=
=
1
2
31
2
3
1
12
312
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
=
=
=
1
2
21
3
2
1
13
213
                 N                                                   N
              ∑ x2n ,u ⋅ x3r ,u ⋅ yu                                ∑ x3n ,u ⋅ x1r ,u ⋅ yu
              u =1                                                  u =1
 b2 n ,3r =    N
                                             ;       b3n ,1r =       N
                                                                                                ;
              ∑ ( x2n ,u ⋅ x3r ,u )      2
                                                                    ∑ ( x3n ,u ⋅ x1r ,u )   2

              u =1                                                  u =1
              N                                                     N
              ∑ x3n ,u ⋅ x2r ,u ⋅ yu                                ∑ x1n ,u ⋅ x2n ,u ⋅ x3r ,u ⋅ yu
              u =1                                                  u =1
 b3n ,2 r =    N
                                             ; b1n ,2 n ,3r =        N
                                                                                                          ;
              ∑ ( x3n ,u ⋅ x2r ,u )      2
                                                                    ∑ ( x1n ,u ⋅ x2n ,u ⋅ x3r ,u )   2

              u =1                                                  u =1
                 N
                 ∑ x1n ,u ⋅ x3n ,u ⋅ x2r ,u ⋅ yu
                 u =1
b1n ,3n ,2 r =    N
                                                           ;
                 ∑ ( x1n ,u ⋅ x3n ,u ⋅ x2r ,u )        2

                 u =1
                            N
                         ∑ x2n ,u ⋅ x3n ,u ⋅ x1r ,u ⋅ yu
                         u =1
   b2 n ,3n ,1r =         N
                                                               ;
                         ∑ ( x2n ,u ⋅ x3n ,u ⋅ x1r ,u )    2

                         u =1
                     N                                               N
                 ∑ x1r ,u ⋅ x2r ,u ⋅ yu                             ∑ x1r ,u ⋅ x3r ,u ⋅ yu
                 u =1                                               u =1
   b1r ,2 r =     N
                                                 ; b1r ,3r =         N
                                                                                                ;
                     ∑ ( x1r ,u ⋅ x2r ,u )   2
                                                                    ∑ ( x1r ,u ⋅ x3r ,u )   2

                     u =1                                           u =1
                     N                                                N
                 ∑ x2r ,u ⋅ x3r ,u ⋅ yu                              ∑ x1n ,u ⋅ x2r ,u ⋅ x3r ,u ⋅ yu
                 u =1                                                u =1
  b2 r ,3r =      N
                                                 ; b1n ,2 r ,3r =     N
                                                                                                          ;
                 ∑ ( x2r ,u ⋅ x3r ,u )       2
                                                                     ∑ ( x1n ,u ⋅ x2r ,u ⋅ x3r ,u )   2

                 u =1                                                u =1


                            N
                         ∑ x2n ,u ⋅ x1r ,u ⋅ x3r ,u ⋅ yu
                         u =1
   b2 n ,1r ,3r =         N
                                                               ;
                         ∑ ( x2n ,u ⋅ x1r ,u ⋅ x3r ,u )2
                         u =1
                         N
                         ∑ x3n ,u ⋅ x1r ,u ⋅ x2r ,u ⋅ yu
                         u =1
   b3n ,1r ,2 r =         N
                                                               ;
                         ∑ ( x3n ,u ⋅ x1r ,u ⋅ x2r ,u )    2

                         u =1




                                                               17