Теория и практика эффективного математического моделирования. Черный А.А. - 44 стр.

UptoLike

Составители: 

44
;
)xx(
yxx
b
N
u
u,r
u,n
u
N
u
u,ru,n
r,n
=
=
=
1
2
2
3
1
23
23
;
)xxx(
yxxx
b
N
u
u,ru,n
u,n
uu,ru,n
N
u
u,n
r,n,n
=
=
=
1
2
32
1
32
1
1
321
;
)xxx(
yxxx
b
N
u
u,ru,n
u,n
uu,r
N
u
u,nu,n
r,n,n
=
=
=
1
2
23
1
2
1
31
231
;
)xxx(
yxxx
b
N
u
u,ru,n
u,n
uu,r
N
u
u,nu,n
r,n,n
=
=
=
1
2
13
2
1
1
32
132
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
=
=
=
1
2
2
1
1
21
21
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
=
=
=
1
2
3
1
1
31
31
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
=
=
=
1
2
3
2
1
32
32
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
=
=
=
1
2
32
1
3
1
21
321
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
=
=
=
1
2
31
2
3
1
12
312
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
=
=
=
1
2
21
3
2
1
13
213
;
)xxx(
yxxx
b
N
u
u,ru,r
u,r
uu,r
N
u
u,ru,r
r,r,r
=
=
=
1
2
32
1
3
1
21
321
                 N                                                           N
              ∑ x3n ,u ⋅ x2r ,u ⋅ yu                                        ∑ x1n ,u ⋅ x2n ,u ⋅ x3r ,u ⋅ yu
              u =1                                                          u =1
 b3n ,2 r =    N
                                              ; b1n ,2 n ,3r =               N
                                                                                                                  ;
              ∑ ( x3n ,u ⋅ x2r ,u )       2
                                                                            ∑ ( x1n ,u ⋅ x2n ,u ⋅ x3r ,u )   2

              u =1                                                          u =1
                 N
                 ∑ x1n ,u ⋅ x3n ,u ⋅ x2r ,u ⋅ yu
                 u =1
b1n ,3n ,2 r =    N
                                                                ;
                 ∑ ( x1n ,u ⋅ x3n ,u ⋅ x2r ,u )         2

                 u =1
                            N
                         ∑ x2n ,u ⋅ x3n ,u ⋅ x1r ,u ⋅ yu
                         u =1
   b2 n ,3n ,1r =         N
                                                                        ;
                          ∑ ( x2n ,u ⋅ x3n ,u ⋅ x1r ,u )        2

                         u =1
                     N                                                       N
                   ∑ x1r ,u ⋅ x2r ,u ⋅ yu                                   ∑ x1r ,u ⋅ x3r ,u ⋅ yu
                   u =1                                                     u =1
   b1r ,2 r =       N
                                                  ; b1r ,3r =                N
                                                                                                        ;
                     ∑ ( x1r ,u ⋅ x2r ,u )    2
                                                                            ∑ ( x1r ,u ⋅ x3r ,u )   2

                     u =1                                                   u =1
                     N                                                        N
                 ∑ x2r ,u ⋅ x3r ,u ⋅ yu                                      ∑ x1n ,u ⋅ x2r ,u ⋅ x3r ,u ⋅ yu
                 u =1                                                        u =1
  b2 r ,3r =      N
                                                  ; b1n ,2 r ,3r =            N
                                                                                                                  ;
                 ∑ ( x2r ,u ⋅ x3r ,u )        2
                                                                             ∑ ( x1n ,u ⋅ x2r ,u ⋅ x3r ,u )   2

                 u =1                                                        u =1


                            N
                         ∑ x2n ,u ⋅ x1r ,u ⋅ x3r ,u ⋅ yu
                         u =1
   b2 n ,1r ,3r =         N
                                                                        ;
                         ∑ ( x2n ,u ⋅ x1r ,u ⋅ x3r ,u )         2

                         u =1
                         N
                         ∑ x3n ,u ⋅ x1r ,u ⋅ x2r ,u ⋅ yu
                         u =1
   b3n ,1r ,2 r =         N
                                                                        ;
                         ∑ ( x3n ,u ⋅ x1r ,u ⋅ x2r ,u )2
                         u =1


                      N
                     ∑ x1r ,u ⋅ x2r ,u ⋅ x3r ,u ⋅ yu
                     u =1
  b1r ,2 r ,3r =      N
                                                                    ;
                      ∑ ( x1r ,u ⋅ x2r ,u ⋅ x3r ,u )        2

                      u =1




                                                                44