Теория и практика эффективного математического моделирования. Черный А.А. - 60 стр.

UptoLike

Составители: 

60
;
x
yx
b
N
u
u,n
u
N
u
u,n
n
=
=
=
1
2
2
1
2
2
;
)xx(
yxx
b
N
u
u,n
u,n
uu,n
N
u
u,n
n,n
=
=
=
1
2
2
1
2
1
1
21
;
x
yx
b
N
u
u,r
u
N
u
u,r
r
=
=
=
1
2
1
1
1
1
;
x
yx
b
N
u
u,r
u
N
u
u,r
r
=
=
=
1
2
2
1
2
2
;
)xx(
yxx
b
N
u
u,r
u,n
u
N
u
u,ru,n
r,n
=
=
=
1
2
2
1
1
21
21
;
)xx(
yxx
b
N
u
u,r
u,n
u
N
u
u,ru,n
r,n
=
=
=
1
2
1
2
1
12
12
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
=
=
=
1
2
2
1
1
21
21
;
x
yx
b
N
u
u,s
u
N
u
u,s
s
=
=
=
1
2
1
1
1
1
;
x
yx
b
N
u
u,s
u
N
u
u,s
s
=
=
=
1
2
2
1
2
2
;
)(
,
,
,,
,
=
=
=
N
u
us
un
u
N
u
usun
sn
xx
yxx
b
1
2
2
1
1
21
21
;
)xx(
yxx
b
N
u
u,s
u,n
u
N
u
u,su,n
s,n
=
=
=
1
2
1
2
1
12
12
;
)xx(
yxx
b
N
u
u,s
u,r
u
N
u
u,su,r
s,r
=
=
=
1
2
2
1
1
21
21
;
)xx(
yxx
b
N
u
u,s
u,r
u
N
u
u,su,r
s,r
=
=
=
1
2
1
2
1
12
12
;
)xx(
yxx
b
N
u
u,s
u,s
u
N
u
u,su,s
s,s
=
=
=
1
2
2
1
1
21
21
где
x
1n,u
= x
n
1,u
+ v
1
; x
1r,u
= x
r
1,u
+ a
1
x
n
1,u
+ c
1
;
x
1s,u
= x
s
1,u
+ d
1
x
r
1,u
+ e
1
x
n
1,u
+ f
1
;
                   N                                                                  N
                ∑ x 2n ,u ⋅ y u                                                      ∑ x1n ,u ⋅ x2n ,u ⋅ yu
       b2 n = u =1 N                         ;                     b1n ,2 n =        u =1
                                                                                      N
                                                                                                                           ;
                       ∑      x 22n ,u                                               ∑ ( x1n ,u ⋅ x2n ,u )             2

                       u =1                                                          u =1
                 N                                                               N
                ∑ x1r ,u ⋅ y u                                                   ∑ x2r ,u ⋅ yu
                u =1                                                            u =1
       b1r =           N
                                         ;                         b2 r =              N
                                                                                                       ;
                       ∑ x12r ,u                                                     ∑      x 22r ,u
                       u =1                                                          u =1



                       N                                                             N
                    ∑ x1n ,u ⋅ x2r ,u ⋅ yu                                         ∑ x2n ,u ⋅ x1r ,u ⋅ yu
                    u =1                                                           u =1
      b1n ,2 r =     N
                                                     ;             b2 n ,1r =       N
                                                                                                                           ;
                     ∑ ( x1n ,u ⋅ x2r ,u )       2
                                                                                     ∑ ( x2n ,u ⋅ x1r ,u )             2

                     u =1                                                            u =1


                        N                                                        N
                       ∑ x1r ,u ⋅ x2r ,u ⋅ yu                                    ∑ x1s ,u ⋅ yu
                       u =1                                                     u =1
       b1r ,2 r =       N
                                                     ;              b1s =              N
                                                                                                       ;
                       ∑ ( x1r ,u ⋅ x2r ,u )2                                        ∑ x12s ,u
                       u =1                                                          u =1
                   N                                                         N
                ∑ x2 s ,u ⋅ yu                                              ∑ x1n,u ⋅ x2 s,u ⋅ yu
                u =1                                                        u =1
       b2 s =           N
                                         ;                    b1n, 2 s =      N
                                                                                                                   ;
                       ∑      x 22s ,u                                       ∑ ( x1n,u ⋅ x2 s,u )          2
                       u =1                                                 u =1

                        N                                                    N
                       ∑ x2n ,u ⋅ x1s ,u ⋅ yu                               ∑ x1r ,u ⋅ x2 s ,u ⋅ yu
                       u =1                                                 u =1
       b2 n ,1s =       N
                                                     ;         b1r ,2 s =    N
                                                                                                               ;
                       ∑ ( x2n ,u ⋅ x1s ,u )     2
                                                                            ∑ ( x1r ,u ⋅ x2 s ,u )         2

                       u =1                                                 u =1


                        N                                                   N
                       ∑ x2r ,u ⋅ x1s ,u ⋅ yu                               ∑ x1s ,u ⋅ x2 s ,u ⋅ yu
                       u =1                                                 u =1
       b2 r ,1s =       N
                                                     ;        b1s ,2 s =     N
                                                                                                               ;
                       ∑ ( x2r ,u ⋅ x1s ,u )     2
                                                                            ∑ ( x1s ,u ⋅ x2 s ,u )         2

                       u =1                                                 u =1
где
      x1n,u = xn1,u + v1;                           x1r,u = xr1,u + a1 ⋅ xn1,u + c1;
      x1s,u = xs1,u + d1 ⋅ xr1,u + e1 ⋅ xn1,u + f1;




                                                         60