Уравнения математической физики. Сборник задач. Даишев Р.А - 72 стр.

UptoLike

Составители: 

127.                                     ³      ´             Ã              !
                                   ∞ J        r
                                   X   0   µ nR               µ2n a2
                 U (r, t) = 8U0                         exp −        t .
                                   n=1     µ3n J1 (µn )        R2
128. Ó ê à ç à í è å. Äëÿ ðåøåíèÿ çàäà÷è íåîáõîäèìî îòûñ-
                                  2                 2
êàòü òàêîé èíòåãðàë óðàâíåíèÿ ∂∂rU2 + 1r ∂U
                                         ∂r
                                            + a12 ∂∂zU2 = 0, êîòî-
ðûé óäîâëåòâîðÿë áû óñëîâèÿì: U |r=0 = êîíå÷íîé âåëè÷èíå,
U |z=0 = 0, Uz+h = f (r) ïðè 0 < r < R.
                               ³       ´     ³        ´
                    ∞ sh µ z J        r ZR        µ     ¶
                  2 X      nR    0 µn R               ρ
       U (r, t) = 2      ³     ´           ρφ(ρ)Jo µn     dρ
                 R n=1 sh µn h J12 (µn )              R
                             R           0

ãäå µ1 , µ2 , µ3 , ... -ïîëîæèòåëüíûå êîðíè óðàâíåíèÿ J0 (µ) = 0.
129.
                        ³    ´   ³      ´
                    ∞ sh µ z J
                    X              µ  r ZR        µ     ¶
                  2       nR   0     nR               ρ
       U (r, t) = 2     ³    ´
                                 2
                                           ρφ(ρ)Jo µn     dρ,
                 R    n=1   sh µn Rh       J0 (µn )                          R
                                                          0

ãäå µ1 , µ2 , µ3 , ... -ïîëîæèòåëüíûå êîðíè óðàâíåíèÿ µJ1 (x) −
− h1 RJ0 (x) = 0.
130.
                 ³    ´   ³      ´
             ∞ sh µ z J
             X              µ  r                              ZR             µ      ¶
           2       nR   o     nR                      1                             ρ
U (r, t) = 2     ³    ´
                          2                           h2 R2
                                                                   ρφ(ρ)Jo       µn   dρ,
            R   n=1   sh µn Rh     J1 (µn ) 1 +        µ2n 0
                                                                                    R

ãäå µ1 , µ2 , µ3 , ...- ïîëîæèòåëüíûå êîðíè óðàâíåíèÿ       xJ1 (x) −
h1 RJ0 (x) = 0.
Ó ê à ç à í è å. Òðåòüå èç ãðàíè÷íûõ óñëîâèé ïðåäûäóùåé
çàäà÷è, çàìåíèòü ñëåäóþùèì: ∂U         |
                                     ∂r r=R
                                            + h1 U |r=R = 0, h1 = hk .
131.
                                             ³        ´
                                             h
                               nπz Jo π h Z
                        ∞              nir
                     2X                                  nπt
          U (r, t) =       sin       ³     ´   f (t) sin     dt.
                     h n=1      h J0 π niR                h
                                                 h        0


                                           72