Уравнения математической физики. Сборник задач. Даишев Р.А - 75 стр.

UptoLike

Составители: 

U(ρ, θ, ϕ) = U
0
"
3
2
ρ
l
cos θ
7
8
µ
ρ
l
3
5 cos
3
θ 3 cos θ
2
+
+
11
6
µ
ρ
l
5
63 cos
5
θ 70 cos
3
θ + 15 cos θ
8
+ ...
#
.
P
m=0
a
m
ρ
m
P
m
(cos θ)
a
m
= 0 m a
m
=
(2m+1)U
0
l
m
1
R
0
P
m
(τ)
m
U
(
ρ, θ, ϕ
) =
U
0
2
3
U
0
µ
ρ
l
2
3 cos
2
θ 1
3
.
ϕ(r, θ) =
X
n=0
µ
1
r
n
P
n
(cos θ); (r > 1).
f(x) =
1
2
+
3
2
2
P
1
(x)
7 · 2!
2
4
· 2! · 1!
P
3
(x) +
1! · 4!
2
6
· 3! · 2!
P
5
(x) ...
U(r, θ) =
P
n=0
A
n
³
r
R
´
n
· P
n
(cos θ), (r < R);
P
n=0
A
n
³
R
r
´
n+1
· P
n
(cos θ), (r > R),
A
n
=
2n + 1
2
π
Z
0
f(θ)P
n
(cos θ) sin θ.
u(r, θ) =
1
3
(1 r
2
) + r
2
cos
2
θ.
u(r, θ, ϕ) =
8
15
µ
r
R
3
P
1
3
(cos θ)
1
5
r
R
P
1
1
(cos θ) cos ϕ.
                      ÎÒÂÅÒÛ È ÓÊÀÇÀÍÈß.

132.
                          "                    µ ¶3
                              3ρ         7 ρ          5 cos3 θ − 3 cos θ
       U (ρ, θ, ϕ) = U0          cos θ −                                 +
                              2l         8 l                   2
                 µ ¶5                                                  #
            11 ρ        63 cos5 θ − 70 cos3 θ + 15 cos θ
          +                                              + ... .
             6 l                       8
                                                            ∞
                                                            P
Ó ê à ç à í è å. Ðåøåíèå èùåòñÿ âèäå ðÿäà                         am ρm Pm (cos θ)
                                                           m=0
                                                       (2m+1)U0   R1
ãäå am = 0 äëÿ âñåõ ÷åòíûõ m , è am =                  Pm (τ )dτ äëÿ
                                                          lm
                                                     0
íå÷åòíûõ m.
133.                              µ ¶2
                            2        ρ 3 cos2 θ − 1
            U (ρ, θ, ϕ) = U0 − U0                      .
                            3        l          3
134.                      ∞ µ ¶n
                         X    1
              ϕ(r, θ) =          Pn (cos θ); (r > 1).
                         n=0 r
             1   3            7 · 2!             1! · 4!
   f (x) =     + 2 P1 (x) − 4          P3 (x) + 6          P5 (x) − ...
             2 2           2 · 2! · 1!         2 · 3! · 2!
135.
                   ∞     ³ ´n
                    P
                  
                       An Rr · Pn (cos θ),              (r < R);
       U (r, θ) =  n=0
                     ∞
                     P    ³ ´n+1
                  
                       An Rr    · Pn (cos θ),           åñëè (r > R),
                    n=0
ãäå
                                   π
                      2n + 1 Z
                 An =          f (θ)Pn (cos θ) sin θdθ.
                        2
                                 0

 ÷àñòíîì ñëó÷àå u(r, θ)        = 13 (1
                             − r2 ) + r2 cos2 θ.
136.
                     µ ¶
                    8 r 3 1           1r 1
      u(r, θ, ϕ) =       P3 (cos θ) −     P (cos θ) cos ϕ.
                   15 R               5R 1

                                          75