ВУЗ:
Рубрика:
22 §3. ðÒÏÉÚ×ÏÄÎÙÅ É ÄÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×
ðÏÄÓÔÁ×ÌÑÑ ÎÁÊÄÅÎÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ É ÞÉÓÌÁ × ÆÏÒÍÕÌÕ ìÅÊÂÎÉÃÁ ÐÒÉ n = 5,
ÐÏÌÕÞÁÅÍ
y
(5)
= (uv)
(5)
=
= C
0
5
u
(5)
v + C
1
5
u
(5−1)
v
0
+ C
2
5
u
(5−2)
v
00
+ C
3
5
u
(5−3)
v
000
+ C
4
5
u
0
v
(5−1)
+ C
5
5
uv
(5)
=
= 1 ·120 ·e
x
+ 5 ·120x ·e
x
+ 10 ·60x
2
·e
x
+ 10 ·20x
3
·e
x
+ 5 ·5x
4
·e
x
+ 1 ·x
5
·e
x
=
= (120 + 600x + 600x
2
+ 200x
3
+ 25x
4
+ x
5
)e
x
.
ðÒÉÍÅÒ 9. ÷ÙÞÉÓÌÉÔØ 55-À ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y = (x
2
− 17) cos 3x.
òÅÛÅÎÉÅ. ðÏÌÁÇÁÑ u = cos 3x É v = x
2
− 17, ÎÁÈÏÄÉÍ (ÓÍ. ÐÒÉÍÅÒ 6):
u
(n)
= 3
n
cos
3x + n
π
2
,
v
0
= 2x, v
00
= 2, v
000
= v
(4)
= v
(5)
= . . . = v
(54)
= v
(55)
= 0.
óÌÅÄÏ×ÁÔÅÌØÎÏ, ×ÓÅ ÓÌÁÇÁÅÍÙÅ × ÆÏÒÍÕÌÅ ìÅÊÂÎÉÃÁ, ÓÏÄÅÒÖÁÝÉÅ ÐÒÏÉÚ×ÏÄ-
ÎÙÅ ÆÕÎËÃÉÉ v ×ÙÛÅ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ, ÂÕÄÕÔ ÒÁ×ÎÙ ÎÕÌÀ. ÷ÙÞÉÓÌÑÅÍ ËÏ-
ÜÆÆÉÃÉÅÎÔÙ ÐÒÉ ÆÕÎËÃÉÑÈ v, v
0
É v
00
:
C
0
55
= 1, C
1
55
= 55, C
2
55
=
55 · 54
2!
= 1485.
ðÏÄÓÔÁ×ÌÑÑ ÎÁÊÄÅÎÎÙÅ ×ÙÒÁÖÅÎÉÑ × ÆÏÒÍÕÌÕ ìÅÊÂÎÉÃÁ ÐÒÉ n = 55, ÐÏÌÕ-
ÞÁÅÍ:
y
(55)
= (uv)
(55)
= C
0
55
u
(55)
v + C
1
55
u
(54)
v
0
+ C
2
55
u
(53)
v
00
=
= 1 · 3
55
cos
3x + 55 ·
π
2
· (x
2
− 17) + 55 · 3
54
cos
3x + 54 ·
π
2
· 2x+
+ 1485 · 3
53
cos
3x + 53 ·
π
2
· 2 =
= 3
55
(x
2
− 17) sin(3x) − 110x · 3
54
cos(3x) −2970 ·3
53
sin(3x).
3.4. äÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ×
ðÕÓÔØ ÆÕÎËÃÉÑ y = f(x) ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÁ × ËÁÖÄÏÊ ÔÏÞËÅ x ÎÅËÏÔÏÒÏÇÏ
ÐÒÏÍÅÖÕÔËÁ. ôÏÇÄÁ ž ÄÉÆÆÅÒÅÎÃÉÁÌ dy ×ÙÞÉÓÌÑÅÔÓÑ ÐÏ ÆÏÒÍÕÌÅ
dy = f
0
(x)dx
É ÎÁÚÙ×ÁÅÔÓÑ ÄÉÆÆÅÒÅÎÃÉÁÌÏÍ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÆÕÎËÃÉÉ f (x).
äÉÆÆÅÒÅÎÃÉÁÌ d(dy) ÏÔ ÄÉÆÆÅÒÅÎÃÉÁÌÁ dy ÎÁÚÙ×ÁÅÔÓÑ ÄÉÆÆÅÒÅÎÃÉÁÌÏÍ
×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ ÆÕÎËÃÉÉ f(x) É ÏÂÏÚÎÁÞÁÅÔÓÑ d
2
y, ÔÏ ÅÓÔØ
d
2
y = f
00
(x)(dx)
2
.
22 §3. ðÒÏÉÚ×ÏÄÎÙÅ É ÄÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ× ðÏÄÓÔÁ×ÌÑÑ ÎÁÊÄÅÎÎÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ É ÞÉÓÌÁ × ÆÏÒÍÕÌÕ ìÅÊÂÎÉÃÁ ÐÒÉ n = 5, ÐÏÌÕÞÁÅÍ y (5) = (uv)(5) = = C50u(5) v + C51u(5−1)v 0 + C52u(5−2)v 00 + C53u(5−3)v 000 + C54u0v (5−1) + C55uv (5) = = 1 · 120 · ex + 5 · 120x · ex + 10 · 60x2 · ex + 10 · 20x3 · ex + 5 · 5x4 · ex + 1 · x5 · ex = = (120 + 600x + 600x2 + 200x3 + 25x4 + x5)ex . ðÒÉÍÅÒ 9. ÷ÙÞÉÓÌÉÔØ 55-À ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y = (x2 − 17) cos 3x. òÅÛÅÎÉÅ. ðÏÌÁÇÁÑ u = cos 3x É v = x2 − 17, ÎÁÈÏÄÉÍ (ÓÍ. ÐÒÉÍÅÒ 6): (n) n π u = 3 cos 3x + n , 2 v 0 = 2x, v 00 = 2, v 000 = v (4) = v (5) = . . . = v (54) = v (55) = 0. óÌÅÄÏ×ÁÔÅÌØÎÏ, ×ÓÅ ÓÌÁÇÁÅÍÙÅ × ÆÏÒÍÕÌÅ ìÅÊÂÎÉÃÁ, ÓÏÄÅÒÖÁÝÉÅ ÐÒÏÉÚ×ÏÄ- ÎÙÅ ÆÕÎËÃÉÉ v ×ÙÛÅ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ, ÂÕÄÕÔ ÒÁ×ÎÙ ÎÕÌÀ. ÷ÙÞÉÓÌÑÅÍ ËÏ- ÜÆÆÉÃÉÅÎÔÙ ÐÒÉ ÆÕÎËÃÉÑÈ v, v 0 É v 00: 0 1 2 55 · 54 C55 = 1, C55 = 55, C55 = = 1485. 2! ðÏÄÓÔÁ×ÌÑÑ ÎÁÊÄÅÎÎÙÅ ×ÙÒÁÖÅÎÉÑ × ÆÏÒÍÕÌÕ ìÅÊÂÎÉÃÁ ÐÒÉ n = 55, ÐÏÌÕ- ÞÁÅÍ: y (55) = (uv)(55) = C55 0 (55) u v + C55 1 (54) 0 2 (53) 00 u v + C55 u v = 55 π 2 54 π = 1 · 3 cos 3x + 55 · · (x − 17) + 55 · 3 cos 3x + 54 · · 2x+ 2 2 53 π + 1485 · 3 cos 3x + 53 · ·2= 2 = 355(x2 − 17) sin(3x) − 110x · 354 cos(3x) − 2970 · 353 sin(3x). 3.4. äÉÆÆÅÒÅÎÃÉÁÌÙ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ× ðÕÓÔØ ÆÕÎËÃÉÑ y = f (x) ÄÉÆÆÅÒÅÎÃÉÒÕÅÍÁ × ËÁÖÄÏÊ ÔÏÞËÅ x ÎÅËÏÔÏÒÏÇÏ ÐÒÏÍÅÖÕÔËÁ. ôÏÇÄÁ ž ÄÉÆÆÅÒÅÎÃÉÁÌ dy ×ÙÞÉÓÌÑÅÔÓÑ ÐÏ ÆÏÒÍÕÌÅ dy = f 0(x)dx É ÎÁÚÙ×ÁÅÔÓÑ ÄÉÆÆÅÒÅÎÃÉÁÌÏÍ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÆÕÎËÃÉÉ f (x). äÉÆÆÅÒÅÎÃÉÁÌ d(dy) ÏÔ ÄÉÆÆÅÒÅÎÃÉÁÌÁ dy ÎÁÚÙ×ÁÅÔÓÑ ÄÉÆÆÅÒÅÎÃÉÁÌÏÍ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ ÆÕÎËÃÉÉ f (x) É ÏÂÏÚÎÁÞÁÅÔÓÑ d2 y, ÔÏ ÅÓÔØ d2 y = f 00 (x)(dx)2.
Страницы
- « первая
- ‹ предыдущая
- …
- 20
- 21
- 22
- 23
- 24
- …
- следующая ›
- последняя »