Компьютерное моделирование и оптимизация технологических процессов и оборудования. Дворецкий С.И - 31 стр.

UptoLike

=
α==α
m
i
ii
xzx
1
),(
α
Выходной сигнал
1
α
2
α
m
α
1
x
2
x
x
m
ϕ
z
)(z
ϕ
Рис. 2.3 Адаптивный сумма-
тор
Рис. 2.4 Нелинейный
преобразователь сиг-
нала
),(
0
α
+α x
α
Точка ветвления
ϕ
0
α
1
α
m
α
1
1
x
m
x
Рис. 2.5 Формальный нейрон
Адаптивным его называют из-за наличия вектора настраиваемых параметров α . Нелинейный пре-
образователь получает скалярный входной сигнал z и переводит его в )( z
ϕ
(рис. 2.4).
Стандартный формальный нейрон составлен из входного сумматора, нелинейного преобразова-
теля и точки ветвления (рис. 2.5).
Точка ветвления служит для рассылки одного сигнала по нескольким адресам. Она получает ска-
лярный входной сигнал z и передает его выходам. Среди нейронных сетей можно выделить две базовые
архитектуры: слоистые и полносвязные сети.
Слоистые сети. Нейроны расположены в несколько слоев (рис. 2.6). Нейроны первого слоя получают
входные сигналы, преобразуют их и через точки ветвления передают нейронам второго слоя. Далее сра-
батывает второй слой и т.д. до k-го слоя, который выдает выходные сигналы для пользователя. Если не
оговорено противное, то каждый выходной сигнал i-го слоя подается на вход всех нейронов
(i + 1)-го слоя. Число нейронов в каждом слое может быть любым и никак заранее не связано с количе-
ством нейронов в других слоях. Стандартный способ подачи входных сигналов: все нейроны первого
слоя получают каждый входной сигнал. Особое распространение получили трехслойные сети, в кото-
рых каждый слой имеет свое наименование: первыйвходной, второйскрытый, третийвыходной.
Полносвязные сети. Каждый нейрон передает свой выходной сигнал остальным нейронам, вклю-
чая самого себя. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейро-
нов после нескольких тактов функционирования сети. Все выходные сигналы подаются всем нейронам.
Таким образом, нейронные сети вычисляют линейные функции, нелинейные функции одного пере-
менного, а также все возможные суперпозициифункции от функций, получаемые при каскадном со-
единении сетей.
Рассмотрим более подробно слоистую сеть (рис. 2.6). Ее структура характеризуется числом К и ко-
личеством нейронов m в каждом слое. Заметим, что в слоистой сети связи между нейронами в слое от-
сутствуют.
Введем новые обозначения: вход i-го нейрона k-го слоя
k
i
z , выход i-го нейрона
k
i
ψ , количество ней-
ронов в k-ом слоеN
k
, k = 0, 1, 2, ..., K. Тогда суперпозиция входных сигналов i-го нейрона k-го слоя
имеет вид:
KkNiz
k
N
j
k
k
j
k
ij
k
i
,1,,1,
1
0
1
==ψα=
=
.
 
 