Вакуумно-плазменные процессы и технологии. Ефремов А.М - 31 стр.

UptoLike

31
3. С возбуждением образующихся частиц: A
+
+ B
-
A
*
+ B.
4. Диссоциативная рекомбинация: AB
+
+ C
-
A + B + C. Пример
диссоциативной электрон-ионной рекомбинации в процессе
*
B
A
e
AB
+
+
+
представлен на рис. 1.4.4 процессами
d
и
'
d
. Оба
процесса сопровождаются образованием возбужденных нейтраль-
ных частиц, а соответствующие сечения имеют резонансный ха-
рактер, то есть падают до очень низких значений в диапазонах
d
ε
ε
<
и
'
d
>
.
Теоретические и экспериментальные исследования процесса ре-
комбинации показали, что излучательная рекомбинация является ма-
ловероятной по сравнению с другими типами рекомбинации и ей в
большинстве случаев можно пренебречь. В условиях ННГП пони-
женного давления (10
2
10
3
Па) в молекулярных газах наиболее су-
щественной является диссоциативная рекомбинация, коэффициент
которой может достигать 10
-6
см
3
/сек. При давлениях соизмеримых с
атмосферным и выше него основную роль обычно играет рекомбина-
ция при тройных соударениях. В разрядах низкого давления (10 Па и
менее) основная роль принадлежит рекомбинации заряженных частиц
на стенках разрядной камеры, вероятность которой близка к единице.
Рекомбинация нейтральных частиц. Под рекомбинацией ней-
тральных частиц понимают процессы взаимодействия свободных
атомов и/или радикалов, приводящие к образованию стабильных мо-
лекул. Подобно рекомбинации заряженных частиц, такие процессы
также идут с выделением энергии, поэтому механизмы рекомбинации
обусловлены способностями системы диссипировать эту энергию.
Основным механизмом объемной рекомбинации в условиях ННГП
является трехчастичный процесс
M
AB
M
B
A
+
+
+
, где третья час-
тица (
M
) служит «приемником» избыточной энергии, стабилизируя
образующуюся молекулу. Поскольку одновременное столкновение
трех частиц при низких давлениях является маловероятным, предпо-
лагается, что данный процесс имеет комплексный характер:
B
A
AB
B
A
kk
+
+
12
*
, (1.46)
M
AB
M
AB
k
+
+
3
*
. (1.47)
Анализ формальной кинетики реакций (1.46) и (1.47) показывает, что
скорость образования стабильной молекулы АВ
AB
R может быть най-
дена следующим образом:
3. С возбуждением образующихся частиц: A+ + B- → A* + B.
4. Диссоциативная рекомбинация: AB+ + C- → A + B + C. Пример
   диссоциативной электрон-ионной рекомбинации в процессе
   AB + + e → A + B * представлен на рис. 1.4.4 процессами d и d ' . Оба
   процесса сопровождаются образованием возбужденных нейтраль-
   ных частиц, а соответствующие сечения имеют резонансный ха-
   рактер, то есть падают до очень низких значений в диапазонах
   ε < εd и ε > εd .
                 '


      Теоретические и экспериментальные исследования процесса ре-
комбинации показали, что излучательная рекомбинация является ма-
ловероятной по сравнению с другими типами рекомбинации и ей в
большинстве случаев можно пренебречь. В условиях ННГП пони-
женного давления (102 – 103 Па) в молекулярных газах наиболее су-
щественной является диссоциативная рекомбинация, коэффициент
которой может достигать 10-6 см3/сек. При давлениях соизмеримых с
атмосферным и выше него основную роль обычно играет рекомбина-
ция при тройных соударениях. В разрядах низкого давления (10 Па и
менее) основная роль принадлежит рекомбинации заряженных частиц
на стенках разрядной камеры, вероятность которой близка к единице.
      Рекомбинация нейтральных частиц. Под рекомбинацией ней-
тральных частиц понимают процессы взаимодействия свободных
атомов и/или радикалов, приводящие к образованию стабильных мо-
лекул. Подобно рекомбинации заряженных частиц, такие процессы
также идут с выделением энергии, поэтому механизмы рекомбинации
обусловлены способностями системы диссипировать эту энергию.
Основным механизмом объемной рекомбинации в условиях ННГП
является трехчастичный процесс A + B + M → AB + M , где третья час-
тица ( M ) служит «приемником» избыточной энергии, стабилизируя
образующуюся молекулу. Поскольку одновременное столкновение
трех частиц при низких давлениях является маловероятным, предпо-
лагается, что данный процесс имеет комплексный характер:

                     A + B →
                             k2
                                AB * →
                                      k1
                                         A+ B ,                   (1.46)
                        AB + M → AB + M .
                           *      k3
                                                                  (1.47)

Анализ формальной кинетики реакций (1.46) и (1.47) показывает, что
скорость образования стабильной молекулы АВ R AB может быть най-
дена следующим образом:



                                    31