Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 100 стр.

UptoLike

Составители: 

b
s
a
α
p
n
1
X
α=0
a
α
w
α
(sp
n
) = b
s
, 0 s p
n
1, (13)
ϕ
ϕ(x) = (1/p
n1
)1
[0,1)
(x/p
n1
)(1 +
X
lN(p,n)
c
l
[m]w
l
(x/p
n1
)), x R
+
. (14)
m
m
m
ϕ
p L
2
(R
+
).
m(sp
n
) = b
s
, 0 s p
n
1,
a
α
b
l
6= 0
0 l p
n1
1 m
E = [0, 1) m(ω) 6= 0 [0, 1/2)
L
2
(R
+
)
ϕ
j
(
ϕ
) := sup{|
ϕ
(x)
ϕ
(y)| : x, y [ 0, p
n1
), x y [ 0, p
j
) }, j N.
§ 10
p = n = 2
b
0
= 1, b
1
= a, b
2
= 0, b
3
= b,
|a|
2
+ |b|
2
= 1
ϕ(x) = 2
3
X
k=0
a
α
ϕ(2x α) (15)
a
0
=
1 + a + b
4
, a
1
=
1 + a b
4
, a
2
=
1 a b
4
, a
3
=
1 a + b
4
.
  4.8. Ïóñòü ïàðàìåòðû bs óäîâëåòâîðÿþò óñëîâèÿì (10), êîýôôèöèåíòû aα
óðàâíåíèÿ (4) îïðåäåëåíû èç ñèñòåìû
                     n
                    pX −1
                            aα wα (sp−n ) = bs ,      0 ≤ s ≤ pn − 1,                    (13)
                     α=0

à ôóíêöèÿ ϕ çàäàíà ðàçëîæåíèåì
                                              X
  ϕ(x) = (1/pn−1 )1[0,1) (x/pn−1 )(1 +                cl [m]wl (x/pn−1 )),    x ∈ R+ .   (14)
                                           l∈N(p,n)

Ïðåäïîëîæèì, ÷òî äëÿ ìàñêè m óðàâíåíèÿ (4) âûïîëíåíî ëþáîå èç óñëîâèé:
   1) m íå èìååò áëîêèðîâàííûõ ìíîæåñòâ;
   2) m óäîâëåòâîðÿåò ìîäèôèöèðîâàííîìó óñëîâèþ Êîýíà.
Òîãäà ôóíêöèÿ ϕ, îïðåäåëåííàÿ ïî ôîðìóëå (14), ÿâëÿåòñÿ ðåøåíèåì óðàâ-
íåíèÿ (4) è ãåíåðèðóåò p -ÊÌÀ â L2 (R+ ).
  Îòìåòèì, ÷òî ñèñòåìà (13) ìîæåò áûòü çàïèñàíà â âèäå

                           m(sp −n ) = bs ,     0 ≤ s ≤ pn − 1,
à êîýôôèöèåíòû aα íàõîäÿòñÿ èç ýòîé ñèñòåìû ïî ôîðìóëàì (8) ñ ïîìîùüþ
ïðåîáðàçîâàíèé Âèëåíêèíà  Êðèñòåíñîíà. Êðîìå òîãî, åñëè bl 6= 0 äëÿ âñåõ
0 ≤ l ≤ p n−1 − 1, òî ìàñêà m óäîâëåòâîðÿåò ìîäèôèöèðîâàííîìó óñëîâèþ
Êîýíà íà ìíîæåñòâå E = [0, 1) (òàê êàê m(ω) 6= 0 íà [0, 1/2)).
   Ïðèìåðû ìàñøòàáèðóþùèõ ôóíêöèé â L2 (R+ ), ïîëó÷àåìûõ óêàçàííûì â
4.8 ìåòîäîì, ïðèâåäåíû â 4.9  4.14. Ãëàäêîñòü êàæäîé èç ýòèõ ôóíêöèé ϕ
õàðàêòåðèçóåòñÿ ñêîðîñòüþ óáûâàíèÿ ïîñëåäîâàòåëüíîñòè

 Ωj (ϕ) := sup{ | ϕ(x) − ϕ(y)| : x, y ∈ [ 0, p n−1 ), x          y ∈ [ 0, p−j ) },   j ∈ N.
Ïðèìåíÿåìîå íèæå ïîíÿòèå áåçóñëîâíîãî áàçèñà îáñóæäàëîñü â § 10 ãëàâû 1.
  4.9. Ïðè p = n = 2 ïîëîæèì
                       b0 = 1,      b1 = a,      b2 = 0,     b3 = b,
ãäå | a|2 + | b|2 = 1. Ýòîò âûáîð ïàðàìåòðîâ ïðèâîäèò ê ìàñøòàáèðóþùåìó
óðàâíåíèþ
                                          3
                                          X
                               ϕ(x) = 2         aα ϕ(2x     α)                           (15)
                                          k=0
ñ êîýôôèöèåíòàìè
           1+a+b                1+a−b                   1−a−b                 1−a+b
    a0 =         ,      a1 =          ,         a2 =          ,        a3 =         .
             4                    4                       4                     4

                                              100