ВУЗ:
Составители:
Рубрика:
p R
+
20. Ôàðêîâ Þ.À. Îðòîãîíàëüíûå âåéâëåòû ñ êîìïàêòíûìè íîñèòåëÿìè íà ëîêàëüíî êîìïàêòíûõ àáåëåâûõ ãðóïïàõ// Èçâ. ÐÀÍ. Ñåð. ìàòåì. 2005. Ò. 69. N 3. Ñ. 193-220. 21. Ôèõòåíãîëüö Ã.Ì. Êóðñ äèôôåðåíöèàëüíîãî è èíòåãðàëüíîãî èñ÷èñ- ëåíèÿ. Ò.3. Ì.: Íàóêà, 1970. 22. Ôóíêöèîíàëüíûé àíàëèç. Ñåðèÿ "Ñïðàâî÷íàÿ ìàòåìàòè÷åñêàÿ áèáëèî- òåêà". Ðåä. Ñ.Ã. Êðåéí. Ì.: Íàóêà, 1972. 23. ×óè Ê. Ââåäåíèå â âýéâëåòû. Ì: Ìèð, 2001. 24. Þäèí Ì.Í., Ôàðêîâ Þ.À., Ôèëàòîâ Ä.Ì. Ââåäåíèå â âåéâëåò-àíàëèç. Ì: ÌÃÃÀ, 2001. 25. Farkov Yu.A. Orthogonal p-wavelets on R+ // Proc. Intern. Conf. "Wavelets and splines"(July 3-8, 2003, St. Petersburg, Russia). St. Petersburg: St. Petersburg University Press, 2005. P. 4-26. 26. Holshneider M. Wavelets: an analysis tool. Oxford: Clarendon Press, 1995. 27. Jaffard S., Meyer Y. Wavelet methods for pointwise reqularity and local oscillations of functions // Memoirs of the American Mathematical Society, no. 587, 1996. 28. Lang W.C. Fractal multiwavelets related to the Cantor dyadic group // Intern. J. Math. and Math. Sci. 1998. V. 21. P. 307317. 29. Lang W.C. Wavelet analysis on the Cantor dyadic group // Houston J. Math. 1998. V. 24. P. 533-544. 30. Schipp F., Wade W.R., Simon P. Walsh series: An introduction to dyadic harmonic analysis. N.Y.: Adam Hilger, 1990. 109