Ряды Фурье и основы вейвлет-анализа. Фарков Ю.А. - 109 стр.

UptoLike

Составители: 

p R
+
  20. Ôàðêîâ Þ.À. Îðòîãîíàëüíûå âåéâëåòû ñ êîìïàêòíûìè íîñèòåëÿìè íà
ëîêàëüíî êîìïàêòíûõ àáåëåâûõ ãðóïïàõ// Èçâ. ÐÀÍ. Ñåð. ìàòåì. 2005. Ò. 69.
N 3. Ñ. 193-220.
   21. Ôèõòåíãîëüö Ã.Ì. Êóðñ äèôôåðåíöèàëüíîãî è èíòåãðàëüíîãî èñ÷èñ-
ëåíèÿ. Ò.3. Ì.: Íàóêà, 1970.
   22. Ôóíêöèîíàëüíûé àíàëèç. Ñåðèÿ "Ñïðàâî÷íàÿ ìàòåìàòè÷åñêàÿ áèáëèî-
òåêà". Ðåä. Ñ.Ã. Êðåéí. Ì.: Íàóêà, 1972.
  23. ×óè Ê. Ââåäåíèå â âýéâëåòû. Ì: Ìèð, 2001.
  24. Þäèí Ì.Í., Ôàðêîâ Þ.À., Ôèëàòîâ Ä.Ì. Ââåäåíèå â âåéâëåò-àíàëèç.
Ì: ÌÃÃÀ, 2001.
   25. Farkov Yu.A. Orthogonal p-wavelets on R+ // Proc. Intern. Conf.
"Wavelets and splines"(July 3-8, 2003, St. Petersburg, Russia). St. Petersburg:
St. Petersburg University Press, 2005. P. 4-26.
  26. Holshneider M. Wavelets: an analysis tool. Oxford: Clarendon Press, 1995.
   27. Jaffard S., Meyer Y. Wavelet methods for pointwise reqularity and local
oscillations of functions // Memoirs of the American Mathematical Society, no.
587, 1996.
   28. Lang W.C. Fractal multiwavelets related to the Cantor dyadic group //
Intern. J. Math. and Math. Sci. 1998. V. 21. P. 307317.
  29. Lang W.C. Wavelet analysis on the Cantor dyadic group // Houston J.
Math. 1998. V. 24. P. 533-544.
   30. Schipp F., Wade W.R., Simon P. Walsh series: An introduction to dyadic
harmonic analysis. N.Y.: Adam Hilger, 1990.




                                      109