Уравнения с частными производными: Сборник заданий по курсу. Глушко В.П - 20 стр.

UptoLike

Рубрика: 

Задание 23. Привести к каноническому виду каждое из
следующих уравнений второго порядка
L@x,y,u@x,yDD=a@x,yD*∑
x,x
u@x,yD+2*b@x,yD*∑
x,y
u@x,yD+c@x,yD*
y,y
u@x,yD+d@x,yD*∑
x
u@x,yD+e@x,yD*∑
y
u@x,yD+m@x,yD*u@x,yD=0
1. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
9
8192 y
2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
6561
,
2 H-81 + 64 y
2
L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2187
, -
1
ÅÅÅÅÅÅÅÅÅ
72
, -
1024 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
27 H81 + 64 y
2
L
,
32 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
9 H81 + 64 y
2
L
,0=
;
2. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
9
25
ÅÅÅÅÅÅÅÅÅ
16
H4 + 25 y
2
L,0,
1
ÅÅÅÅÅÅÅÅÅ
16
H16 + 16 x
2
L, -
25 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4
,
25 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4
,0=;
3. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
9
32 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
125
,
256 x y
2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3125
,
2048 x y
4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
78125
, -
128 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
625
, -
32 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
625
,0=.
Построить характеристики для этого уравнения,
если это возможно, или соответствующую
криволинейную систему координат. Если уравнение
меняет тип, то привести его к каноническому
виду в каждой подобласти, где сохраняется тип.
Провести проверку.
20
                                                                                        20



Задание № 23. Привести к каноническому виду каждое из
следующих уравнений второго порядка
L@x,y,u@x,yDD=a@x,yD*∑x,x u@x,yD+2*b@x,yD*∑x,y u@x,yD+c@x,yD*


1. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
   ∑y,y u@x,yD+d@x,yD*∑x u@x,yD+e@x,yD*∑y u@x,yD+m@x,yD*u@x,yD=0

     8192 y2 2 H-81 + 64 y2 L
  9 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
                                                                                           27 H81 + 64 y L 9 H81 + 64 y L
                                                                              1                      1024 y                                      32 y
                                                                                                                     ÅÅÅÅÅÅÅÅ2ÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅ , 0=;
                                                          ÅÅÅÅÅÅÅÅÅÅÅÅÅ , - ÅÅÅÅÅÅÅÅÅ , - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
        6561                                2187                             72


  9 ÅÅÅÅÅÅÅÅÅ H4 + 25 y2 L, 0, ÅÅÅÅÅÅÅÅÅ H16 + 16 x2 L, - ÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅ , 0=;
     25                          1                         25 x 25 y

3. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
     16                         16                            4               4


  9 ÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , - ÅÅÅÅÅÅÅÅÅÅÅÅÅ , 0=.
     32 x 256 x y2 2048 x y4                                                       128 y                 32 x
     125                 3125                        78125                           625                 625
Построить характеристики для этого уравнения,
 если это возможно, или соответствующую
 криволинейную систему координат. Если уравнение
 меняет тип, то привести его к каноническому
 виду в каждой подобласти, где сохраняется тип.
Провести проверку.