Уравнения с частными производными: Сборник заданий по курсу. Глушко В.П - 46 стр.

UptoLike

Рубрика: 

Задание 55. Привести к каноническому виду каждое из
следующих уравнений второго порядка
L@x,y,u@x,yDD=a@x,yD*∑
x,x
u@x,yD+2*b@x,yD*∑
x,y
u@x,yD+c@x,yD*
y,y
u@x,yD+d@x,yD*∑
x
u@x,yD+e@x,yD*∑
y
u@x,yD+m@x,yD*u@x,yD=0
1. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
9
4
ÅÅÅÅÅÅÅÅÅÅÅÅ
225
H9 + 121 x
2
L,0,-
121
ÅÅÅÅÅÅÅÅÅÅÅÅ
225
H25 + 4y
2
L,
484 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
225
,
484 y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
225
,0=;
2. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,
yD<Ø
9
121 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
36
,
11 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
48
,
4 + x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
64
,
121 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
144
,0,0=;
3. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,
yD<Ø
9
y
2
ÅÅÅÅÅÅÅÅÅ
16
,
9xy
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4
,81x
2
,
3
ÅÅÅÅÅ
4
, -
9
ÅÅÅÅÅ
2
,0=.
Построить характеристики для этого уравнения,
если это возможно, или соответствующую
криволинейную систему координат. Если уравнение
меняет тип, то привести его к каноническому
виду в каждой подобласти, где сохраняется тип.
Провести проверку.
46
                                                                           46



Задание № 55. Привести к каноническому виду каждое из
следующих уравнений второго порядка
L@x,y,u@x,yDD=a@x,yD*∑x,x u@x,yD+2*b@x,yD*∑x,y u@x,yD+c@x,yD*


1. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,yD<Ø
   ∑y,y u@x,yD+d@x,yD*∑x u@x,yD+e@x,yD*∑y u@x,yD+m@x,yD*u@x,yD=0


  9 ÅÅÅÅÅÅÅÅÅÅÅÅ H9 + 121 x2 L, 0, - ÅÅÅÅÅÅÅÅÅÅÅÅ H25 + 4 y2 L, ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , 0=;
        4                             121                        484 x 484 y

2. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,
     225                              225                          225                 225


  yD<Ø9 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , 0, 0=;
                121 x            11 x         4+x             121 x

3. 8a@x,yD,b@x,yD,c@x,yD,d@x,yD,e@x,yD,m@x,
                 36               48           64              144


  yD<Ø9 ÅÅÅÅÅÅÅÅÅ , ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ , 81 x2 , ÅÅÅÅÅ , - ÅÅÅÅÅ , 0=.
                y2         9xy                         3          9
                16          4                          4          2
Построить характеристики для этого уравнения,
 если это возможно, или соответствующую
 криволинейную систему координат. Если уравнение
 меняет тип, то привести его к каноническому
 виду в каждой подобласти, где сохраняется тип.
Провести проверку.