Вычислительные методы линейной алгебры. Горбаченко В.И - 4 стр.

UptoLike

4
ВВЕДЕНИЕ
Множество вычислительных задач сводится к решению систем линей-
ных и нелинейных алгебраических уравнений и к вычислению собственных
чисел и векторов матриц.
Целью данного пособия является получение студентами практических
навыков решения вычислительных задач и проведения вычислительного экс-
перимента. Причем, упор делается на прикладные аспекты и на алгоритмиче-
скую сторону численных методов.
Особенностями
данного пособия являются:
детальное описание применения основных функций вычислительной
линейной алгебры, реализованных в системе MATLAB, применение многих из
которых в отечественной учебной литературе не описывается;
наличие заданий для лабораторных занятий и самостоятельной рабо-
ты, наличие разработанной авторами библиотеки учебных программ, позво-
ляющие организовать эффективное изучение численных методов студентами
с
различным уровнем подготовки.
Основы вычислительной линейной алгебры можно найти в книгах [1
5]. Обоснование методов подпространств Крылова можно найти в книгах [6
– 8]. По системе MATLAB имеется много литературы, например, [9 – 10].
                            ВВЕДЕНИЕ
     Множество вычислительных задач сводится к решению систем линей-
ных и нелинейных алгебраических уравнений и к вычислению собственных
чисел и векторов матриц.
     Целью данного пособия является получение студентами практических
навыков решения вычислительных задач и проведения вычислительного экс-
перимента. Причем, упор делается на прикладные аспекты и на алгоритмиче-
скую сторону численных методов.
     Особенностями данного пособия являются:
     – детальное описание применения основных функций вычислительной
линейной алгебры, реализованных в системе MATLAB, применение многих из
которых в отечественной учебной литературе не описывается;
     – наличие заданий для лабораторных занятий и самостоятельной рабо-
ты, наличие разработанной авторами библиотеки учебных программ, позво-
ляющие организовать эффективное изучение численных методов студентами
с различным уровнем подготовки.
     Основы вычислительной линейной алгебры можно найти в книгах [1 –
5]. Обоснование методов подпространств Крылова можно найти в книгах [6
– 8]. По системе MATLAB имеется много литературы, например, [9 – 10].




                                                                        4