Сопротивление материалов: основы теории и примеры решения задач. Гребенюк Г.И - 63 стр.

UptoLike

Составители: 

63
α - угол наклона плоскости общей изгибающей пары к
плоскости YOX.
y, z – координаты точки, где определяется напряжение.
Формула (4.1) может быть записана в виде:
zy
ycos zsin
(y,z) M( )
II
α⋅α
σ= + (4.2)
Из условия
nn
(y ,z ) 0σ=
, где у
n
и z
n
координаты точек, лежа-
щих на нейтральной оси, из (4.2) получим линейное уравнение
нейтральной оси:
nn
zy
ycos zsin
0
II
α
α
+
= (4.3)
Отсюда:
z
nn
y
Isin
yz
Icos
α
=
−⋅
⋅α
(4.3`)
Так как у
n
=0, z
n
=0 удовлетворяют (4.3’), нейтральная ось
прямая, проходящая через центр тяжести сечения. Угол наклона
ϕ нейтральной оси к оси z (рис 4.2) находится из соотношения:
z
y
I
tg tg
I
ϕ
=− α (4.4)
Проверка прочности при косом изгибе проводится, как пра-
вило, по нормальным напряжениям. Для выявления наиболь-
ших растягивающих и сжимающих нормальных напряжений
    α - угол наклона плоскости общей изгибающей пары к
    плоскости YOX.
    y, z – координаты точки, где определяется напряжение.




Формула (4.1) может быть записана в виде:
                                  y ⋅ cos α z ⋅ sin α
                     σ(y, z) = M(          +          )         (4.2)
                                      Iz        Iy
Из условия σ(y n , z n ) = 0 , где уn и zn – координаты точек, лежа-
щих на нейтральной оси, из (4.2) получим линейное уравнение
нейтральной оси:
                                   y n cos α z n sin α
                                               +           =0   (4.3)
                                       Iz           Iy
Отсюда:
                                          I ⋅ sin α
                                  yn = − z            ⋅ zn     (4.3`)
                                          I y ⋅ cos α
    Так как уn=0, zn=0 удовлетворяют (4.3’), нейтральная ось –
прямая, проходящая через центр тяжести сечения. Угол наклона
ϕ нейтральной оси к оси z (рис 4.2) находится из соотношения:
                                             I
                                   tgϕ = − z tgα                (4.4)
                                             Iy
    Проверка прочности при косом изгибе проводится, как пра-
вило, по нормальным напряжениям. Для выявления наиболь-
ших растягивающих и сжимающих нормальных напряжений



                                 63