ВУЗ:
Составители:
Рубрика:
σ τ Σ
·
+
σ = h · i τ = h 1 i Σ :
σ = h · i τ = h 1 i
Σ : (1) (xy)z = x(yz) .
σ = h ·, 1 i τ = h 2, 0 i
Σ : (1) (2) x1 = 1x = x .
σ = h ·,
−1
, 1 i τ = h 2, 1, 0 i
Σ : (1), (2)
(3) x
−1
x = xx
−1
= 1 .
σ = h +, −, 0 i τ = h 2, 1, 0 i
Σ : (1
+
) (x + y) + z = x + (y + z) ,
(2
+
) x + 0 = 0 + x = x ,
(3
+
) x + (−x) = 0 ,
(4
+
) x + y = y + x .
σ = h +, ·, −, 0 i τ = h 2, 2, 1, 0 i
Σ : (1
+
) − (4
+
) ,
(5) (x + y)z = xz + yz ,
(6) x(y + z) = xy + xz .
σ = h +, ·, −, 0 i τ = h 2, 2, 1, 0 i
Σ : (1
+
) − (4
+
), (5), (6), (1) .
σ = h +, ·, −, 0 i τ = h 2, 2, 1, 0 i
Σ : (1
+
) − (4
+
), (5), (6), (1) , (9) xx = x .
σ = h +, ·, −, 0, 1 i τ = h 2, 2, 1, 0, 0 i
Σ : (1
+
) − (4
+
), (5), (6), (1), (2) .
σ = h +, ·, −, 0, 1 i
τ = h 2, 2, 1, 0, 0 i
Σ : (1
+
) − (4
+
), (5), (6), (1), (2) , (4) xy = yx .
134 Ïðèëîæåíèå Ïðèëîæåíèå Íèæå ïðèâåäåíû êëàññè÷åñêèå óíèâåðñàëüíûå àëãåáðàè÷åñêèå ñèñòåìû. Óêàçàíû èõ ñèãíàòóðà σ , òèï τ è îïðåäåëÿþùèå òîæäåñòâà Σ è ñîîòíîøåíèÿ. Äëÿ óäîáñòâà îáîçíà÷å- íèÿ îïåðàöèé óíèôèöèðîâàíû è ñ÷èòàåòñÿ, ÷òî ïðèîðèòåò · (óìíîæåíèå èëè ïåðåñå÷åíèå; ìîæåò îïóñêàòüñÿ) âûøå ïðèîðèòåòà + (ñëîæåíèå èëè îáúåäèíåíèå). Ãðóïïîèäû. σ = h·i; τ = h1i; Σ: Ïîëóãðóïïû. σ = h·i; τ = h1i; Σ: (1) (xy)z = x(yz) . Ìîíîèäû. σ = h ·, 1 i ; τ = h 2, 0 i ; Σ: (1) è (2) x1 = 1x = x . Ãðóïïû. σ = h ·, −1 , 1 i ; τ = h 2, 1, 0 i ; Σ: (1), (2) è (3) x−1 x = xx−1 = 1 . Àáåëåâû ãðóïïû. σ = h +, −, 0 i ; τ = h 2, 1, 0 i ; Σ: (1+ ) (x + y) + z = x + (y + z) , (2+ ) x + 0 = 0 + x = x, (3+ ) x + (−x) = 0 , (4+ ) x + y = y + x. Êîëüöà. σ = h +, ·, −, 0 i ; τ = h 2, 2, 1, 0 i ; Σ: (1+ ) − (4+ ) , (5) (x + y)z = xz + yz , (6) x(y + z) = xy + xz . Àññîöèàòèâíûå êîëüöà. σ = h +, ·, −, 0 i ; τ = h 2, 2, 1, 0 i ; Σ: (1+ ) − (4+ ), (5), (6), (1) . Áóëåâû êîëüöà. σ = h +, ·, −, 0 i ; τ = h 2, 2, 1, 0 i ; Σ: (1+ ) − (4+ ), (5), (6), (1) , (9) xx = x . Àññîöèàòèâíûå êîëüöà ñ åäèíèöåé. σ = h +, ·, −, 0, 1 i ; τ = h 2, 2, 1, 0, 0 i ; Σ: (1+ ) − (4+ ), (5), (6), (1), (2) . Àññîöèàòèâíî-êîììóòàòèâíûå êîëüöà ñ åäèíèöåé. σ = h +, ·, −, 0, 1 i ; τ = h 2, 2, 1, 0, 0 i ; Σ: (1+ ) − (4+ ), (5), (6), (1), (2) , (4) xy = yx .