Лекции по упорядоченным множествам и универсальной алгебре. Гуров С.И. - 134 стр.

UptoLike

Составители: 

σ τ Σ
·
+
σ = h · i τ = h 1 i Σ :
σ = h · i τ = h 1 i
Σ : (1) (xy)z = x(yz) .
σ = h ·, 1 i τ = h 2, 0 i
Σ : (1) (2) x1 = 1x = x .
σ = h ·,
1
, 1 i τ = h 2, 1, 0 i
Σ : (1), (2)
(3) x
1
x = xx
1
= 1 .
σ = h +, , 0 i τ = h 2, 1, 0 i
Σ : (1
+
) (x + y) + z = x + (y + z) ,
(2
+
) x + 0 = 0 + x = x ,
(3
+
) x + (x) = 0 ,
(4
+
) x + y = y + x .
σ = h +, ·, , 0 i τ = h 2, 2, 1, 0 i
Σ : (1
+
) (4
+
) ,
(5) (x + y)z = xz + yz ,
(6) x(y + z) = xy + xz .
σ = h +, ·, , 0 i τ = h 2, 2, 1, 0 i
Σ : (1
+
) (4
+
), (5), (6), (1) .
σ = h +, ·, , 0 i τ = h 2, 2, 1, 0 i
Σ : (1
+
) (4
+
), (5), (6), (1) , (9) xx = x .
σ = h +, ·, , 0, 1 i τ = h 2, 2, 1, 0, 0 i
Σ : (1
+
) (4
+
), (5), (6), (1), (2) .
σ = h +, ·, , 0, 1 i
τ = h 2, 2, 1, 0, 0 i
Σ : (1
+
) (4
+
), (5), (6), (1), (2) , (4) xy = yx .
134                                                                                              Ïðèëîæåíèå


      Ïðèëîæåíèå
   Íèæå ïðèâåäåíû êëàññè÷åñêèå óíèâåðñàëüíûå àëãåáðàè÷åñêèå ñèñòåìû. Óêàçàíû èõ
ñèãíàòóðà σ , òèï τ è îïðåäåëÿþùèå òîæäåñòâà Σ è ñîîòíîøåíèÿ. Äëÿ óäîáñòâà îáîçíà÷å-
íèÿ îïåðàöèé óíèôèöèðîâàíû è ñ÷èòàåòñÿ, ÷òî ïðèîðèòåò · (óìíîæåíèå èëè ïåðåñå÷åíèå;
ìîæåò îïóñêàòüñÿ) âûøå ïðèîðèòåòà + (ñëîæåíèå èëè îáúåäèíåíèå).

Ãðóïïîèäû.          σ = h·i; τ = h1i;                 Σ:
Ïîëóãðóïïû.           σ = h·i; τ = h1i;

                                 Σ:      (1) (xy)z = x(yz) .

Ìîíîèäû.          σ = h ·, 1 i ; τ = h 2, 0 i ;

                      Σ:        (1)     è                    (2) x1 = 1x = x .

Ãðóïïû.        σ = h ·,   −1
                               , 1 i ; τ = h 2, 1, 0 i ;

                                Σ:      (1), (2) è
                                        (3) x−1 x = xx−1 = 1 .

Àáåëåâû ãðóïïû.                σ = h +, −, 0 i ; τ = h 2, 1, 0 i ;

                          Σ:        (1+ )     (x + y) + z = x + (y + z) ,
                                    (2+ )     x + 0 = 0 + x = x,
                                    (3+ )     x + (−x) = 0 ,
                                    (4+ )     x + y = y + x.

Êîëüöà.        σ = h +, ·, −, 0 i ; τ = h 2, 2, 1, 0 i ;

                               Σ:      (1+ ) − (4+ ) ,
                                       (5) (x + y)z = xz + yz ,
                                       (6) x(y + z) = xy + xz .

Àññîöèàòèâíûå êîëüöà.                       σ = h +, ·, −, 0 i ; τ = h 2, 2, 1, 0 i ;

                               Σ:      (1+ ) − (4+ ), (5), (6), (1) .

Áóëåâû êîëüöà.             σ = h +, ·, −, 0 i ; τ = h 2, 2, 1, 0 i ;

                      Σ:         (1+ ) − (4+ ), (5), (6), (1) ,                   (9) xx = x .

Àññîöèàòèâíûå êîëüöà ñ åäèíèöåé.                            σ = h +, ·, −, 0, 1 i ; τ = h 2, 2, 1, 0, 0 i ;

                           Σ:         (1+ ) − (4+ ), (5), (6), (1), (2) .

Àññîöèàòèâíî-êîììóòàòèâíûå êîëüöà ñ åäèíèöåé.                                     σ     =      h +, ·, −, 0, 1 i ;
      τ = h 2, 2, 1, 0, 0 i ;

                 Σ:     (1+ ) − (4+ ), (5), (6), (1), (2) ,                 (4) xy = yx .