Введение в теорию нечетких множеств. Хаптахаева Н.Б - 57 стр.

UptoLike

57
Существуют процедуры по вычислению некоторой четкой функции H(A,
B) от нечетких аргументов, которые называются индексом ранжирования.
Значение индекса для конкретной пары чисел дает основание решить вопрос о
том, какое из двух нечетких чисел больше (или с какой степенью больше).
Приведем пример индекса ранжирования:
H(A,B) = H
+
(A) – H
+
(B), H
+
(A) =
1
0
0
)( dAAM
, (3.11)
где А
0
αуровневое подмножество нечеткого множества А.
М(А
0
) = (а
-
+ а
+
)/2; a
-
=
0
inf
Aa
a; a
+
=
0
sup
Aa
a.
При этом, если H(A,B) 0, то A B.
Данный индекс ранжирования учитывает форму функции
принадлежности.
Пример.
Два истребителя противоборствующих воздушных армий
руководствуются стратегиями:
А: Если снарядов мало, то вероятность поражения противника малая,
иначе не малая.
В: Если снарядов не мало, то вероятность поражения противника
большая, иначе не большая. Известно, что
мало снарядов = A=(0.8/3, 0.4/15, 0.3/30),
малая вероятность = B=(0.1/0.9, 0.5/0.5, 0.8/0.1),
большая вероятность = C = (0.8/0.9, 0.5/0.5, 0.3/0.2).
Количество снарядов не очень мало. Кто победит?
Определим все необходимые для решения задачи нечеткие множества:
не мало снарядов =
A
= (0.2/3, 0.6/15, 0.3/30).
не малая вероятность =
B
= (0.9/0.9, 0.5/0.5, 0.2/0.1).
не большая вероятность =
C = (0.2/0.9, 0.5/0.5, 0.7/0.2).
x = не очень мало =
2
)(мало
(мало)
2
= (0.64/3, 0.16/15, 0.09/30)