Уравнения математической физики. Уравнение теплопроводности. Хуснутдинов Н.Р. - 3 стр.

UptoLike

Составители: 

A
n
B
n
B
n
= c
0
m
A
n
.
c
0
n
=
h
0
λ
n
k
0
, c
l
n
=
h
l
λ
n
k
l
.
v(x, t) =
X
n=1
A
n
(cos λ
n
x + c
0
n
sin λ
n
x)e
λ
2
n
a
2
t
.
λ
n
n
A
n
v(x, 0) =
X
n=1
A
n
φ
n
(x) = F (x),
φ
n
(x) = cos λ
n
x + c
0
n
sin λ
n
x
φ
m
(x) x
X
n=1
A
n
Z
l
0
φ
n
(x)φ
m
(x)dx =
Z
l
0
φ
m
(x)F (x)dx.
Z
l
0
φ
n
(x)φ
m
(x)dx = δ
nm
Φ
m
,
Φ
m
=
(1 + c
l 2
m
)c
0
m
+ (1 + c
0 2
m
)(c
l
m
+ lλ
m
(1 + c
l 2
m
))
2λ
m
(1 + c
l 2
m
)
.
A
m
=
1
Φ
m
Z
l
0
φ
m
(x)F (x)dx,
u(x, t) = v(x, t) + α + βx,
v(x, t) =
X
n=1
A
n
(cos λ
n
x + c
0
m
sin λ
n
x)e
λ
2
n
a
2
t
,
A
n
=
1
Φ
n
Z
l
0
φ
n
(x)F (x)dx,
α =
h
0
(k
l
+ lh
l
)T
0
+ h
l
k
0
T
l
h
0
(lh
l
+ k
l
) + h
l
k
0
,
β =
h
0
h
l
(T
l
T
0
)
h
0
(lh
l
+ k
l
) + h
l
k
0
.
T
l
h
l
h
0
0
α = T
l
β = 0
tg λ
m
l
cos λ
m
l = 0.
λ
m
=
π(2m 1)
2l
, m = 1, 2, · · · .
φ
m
= cos λ
m
x, Φ
m
=
l
2
,
ãäå êîýèöèåíòû An è Bn ñâÿçàíû ñîîòíîøåíèåì                                                     Òàêèì îáðàçîì,

                                       Bn = c0m An .                                                                          1         l
                                                                                                                                  Z
                                                                                                                      Am   =                φm (x)F (x)dx,
                                                                                                                             Φm
Çäåñü äëÿ óïðîùåíèÿ çàïèñè ïîëîæåíî:                                                                                                0

                                                                                            è çàäà÷à ðåøåíà ïîëíîñòüþ äëÿ ïðîèçâîëüíûõ ãðàíè÷íûõ óñëîâèé.
                                        h0            hl
                               c0n   =       , cln =       .                                åøåíèå èìååò ñëåäóþùèé âèä:
                                       λn k0         λn kl
Îòìåòèì ñðàçó, ÷òî ñïåêòð çàäà÷è íå çàâèñèò îò òåìïåðàòóð îêðó-                                                       u(x, t) = v(x, t) + α + βx,
æàþùåé ñðåäû ó êîíöîâ ñòåðæíÿ.
                                                                                            ãäå
   Ó÷èòûâàÿ îäíîðîäíîñòü ãðàíè÷íûõ óñëîâèé ïîëó÷àåì îáùåå ðå-
øåíèå óðàâíåíèÿ òåïëîïðîâîäíîñòè, óäîâëåòâîðÿþùåå ãðàíè÷íûì                                                            ∞
                                                                                                                       X                                     2   2
óñëîâèÿì                                                                                                v(x, t)   =          An (cos λn x + c0m sin λn x)e−λn a t ,
                                                                                                                       n=1
                           ∞                                                                                               Z l
            v(x, t) =
                           X
                                 An (cos λn x + c0n sin λn x)e        −λ2n a2 t
                                                                                  .   (6)                               1
                                                                                                           An     =             φn (x)F (x)dx,
                           n=1                                                                                         Φn 0
                                                                                                                       h0 (kl + lhl )T0 + hl k0 Tl
Çäåñü ñóììèðîâàíèå ïðîèçâîäèòñÿ ïî âñåì λn , óäîâëåòâîðÿþùèì                                                 α =                                   ,
                                                                                                                          h0 (lhl + kl ) + hl k0
óñëîâèþ (5). Èíäåêñ n íóìåðóåò ðåøåíèÿ.
   Äëÿ íàõîæäåíèÿ êîýèöèåíòîâ An èñïîëüçóåì íà÷àëüíîå óñëî-                                                             h0 hl (Tl − T0 )
                                                                                                             β    =                           .
âèå (3). Ïîëó÷àåì ñîîòíîøåíèå                                                                                          h0 (lhl + kl ) + hl k0
                                        ∞
                                        X                                                      ×àñòíûå ñëó÷àè ãðàíè÷íûõ óñëîâèé (1):
                       v(x, 0) =              An φn (x) = F (x),                               Ïðèìåð 1. Íà ïðàâîì êîíöå ñòåðæíÿ ïîääåðæèâàåòñÿ ïîñòîÿí-
                                        n=1                                                 íàÿ òåìïåðàòóðà, ðàâíàÿ òåìïåðàòóðå îêðóæàþùåé ñðåäû Tl , à íà
ãäå φn (x) = cos λn x + c0n sin λn x. Óìíîæèì, äàëåå, ýòî ñîîòíîøåíèå                       ëåâîì êîíöå òåìïåðàòóðà ìåíÿåòñÿ, íî ñ ïîñòîÿííûì íóëåâûì ãðàäè-
íà óíêöèþ φm (x) è ïðîèíòåãðèðóåì ïî x. Èìååì                                              åíòîì. Äëÿ âûïîëíåíèÿ ýòèõ óñëîâèé ïîëîæèì hl → ∞ è h0 → 0. Â
                                                                                            ýòîì ñëó÷àå ïîëó÷àåì, ÷òî α = Tl è β = 0. Èç óðàâíåíèÿ (5) ïîëó÷àåì
            ∞
            X          Z   l                         Z     l                                ÷òî tg λm l → ∞, ò.å.
                  An           φn (x)φm (x)dx =                φm (x)F (x)dx.
            n=1        0                               0                                                                     cos λm l = 0.                            (7)
Íåòðóäíî ïîêàçàòü, ÷òî                                                                      Òàêèì îáðàçîì, ñïåêòð íàõîäèòñÿ â ÿâíîì âèäå:
                   Z l
                       φn (x)φm (x)dx = δnm Φm ,                                                                           π(2m − 1)
                                                                                                                  λm =               , m = 1, 2, · · · .
                           0                                                                                                  2l
ãäå                                                                                         Ïðè ýòîì
                  (1 + clm2 )c0m + (1 + c0m2 )(clm + lλm (1 + clm2 ))                                                                                 l
         Φm =                                                         .                                                φm = cos λm x, Φm =              ,
                                    2λm (1 + clm2 )                                                                                                   2

                                          5                                                                                     6