Задачи по аналитической геометрии. Часть II. Игудесман К.Б. - 6 стр.

UptoLike

Составители: 

a = {3, 1, 2}, b = {2, 7, 4}, c = {1, 2, 1}
1) (a, b, c); 2) [[a, b], c]; 3) [a, [b, c]].
a
1
, a
2
, a
3
b
1
, b
2
, b
3
a
i
b
k
=
(
0, i 6= k
1, i = k .
b
1
, b
2
, b
3
a
1
, a
2
, a
3
AB = m + 2n
AD = m 3n |m| = 5, |n| = 3 (
d
mn) =
π
6
a = p 3q + r, b = 2p + q 3r c = p + 2q + r
a = 3m + 5n, b = m 2n, c = 2m + 7n |m| = 1, |n| =
3, (
d
mn) = 135
[a, b]
2
+ (ab)
2
= a
2
b
2
[a, (b + λa)] = [(a + µb), b] = [a, b]
[a, b] + [b, c] + [c, a] = 0
[a, b], [b, c], [c, a]
[[a, b], c] = [a, [b, c]]
ax = α, bx = β, cx = γ.
a
1
= {2, 1, 1}, a
2
= {−3, 0, 2}, a
3
=
{5, 1, 2}
   6. Äàíû âåêòîðû a = {3, 1, 2}, b = {2, 7, 4}, c = {1, 2, 1}.
Íàéòè: 1) (a, b, c);   2) [[a, b], c];       3) [a, [b, c]].
   7. Äâå òðîéêè âåêòîðîâ a1 , a2 , a3 è b1 , b2 , b3 íàçûâàþòñÿ âçàèì-
íûìè, åñëè âåêòîðû ýòèõ òðîåê ñâÿçàíû ñîîòíîøåíèÿìè:
                                 (
                                     0, åñëè i 6= k
                       ai bk =
                                     1, åñëè i = k .

Ïîëüçóÿñü îïåðàöèÿìè ñêàëÿðíîãî âåêòîðíîãî óìíîæåíèÿ, íàéòè âåê-
òîðû b1 , b2 , b3 òðîéêè, âçàèìíîé òðîéêå âåêòîðîâ a1 , a2 , a3 .
   8. Âû÷èñëèòü ïëîùàäü ïàðàëëåëîãðàììà, ïîñòðîåííîãî íà âåêòî-
    −−→                −−→
                                                       mn) = π6 .
ðàõ AB = m + 2n è AD = m − 3n, ãäå |m| = 5, |n| = 3 è (d
   9. Âû÷èñëèòü îáúåì ïàðàëëåïèïåäà, ïîñòðîåííîãî íà âåêòîðàõ:
1) a = p − 3q + r, b = 2p + q − 3r è c = p + 2q + r, ãäå p, q, è r 
âçàèìíî ïåðïåíäèêóëÿðíûå îðòû;
2) a = 3m + 5n, b = m − 2n, c = 2m + 7n, ãäå |m| = 1, |n| =
    mn) = 135◦ .
3, (d
                        
   10. Ïîêàçàòü, ÷òî [a, b]2 + (ab)2 = a2 b2 .
   11. Ïîêàçàòü, ÷òî [a, (b + λa)] = [(a + µb), b] = [a, b].
   12. Ïîêàçàòü, ÷òî åñëè [a, b] + [b, c] + [c, a] = 0, òî âåêòîðû a, b è
c êîìïëàíàðíû.
   13. Ïîêàçàòü, ÷òî åñëè âåêòîðû [a, b], [b, c], [c, a] êîìïëàíàðíû,
òî îíè êîëëèíåàðíû.
   14. Ïðè êàêèõ óñëîâèÿõ [[a, b], c] = [a, [b, c]]?
   15. Äàíû òðè íåêîìïëàíàðíûõ âåêòîðà a, b è c. Íàéòè âåêòîð x,
óäîâëåòâîðÿþùèé ñèñòåìå óðàâíåíèé

                        ax = α, bx = β, cx = γ.

   16. Äëÿ òðîéêè âåêòîðîâ a1 = {2, 1, −1}, a2 = {−3, 0, 2}, a3 =
{5, 1, −2} íàéòè âçàèìíóþ òðîéêó.

                                         6