ВУЗ:
Составители:
Рубрика:
a = {3, 1, 2}, b = {2, 7, 4}, c = {1, 2, 1}
1) (a, b, c); 2) [[a, b], c]; 3) [a, [b, c]].
a
1
, a
2
, a
3
b
1
, b
2
, b
3
a
i
b
k
=
(
0, i 6= k
1, i = k .
b
1
, b
2
, b
3
a
1
, a
2
, a
3
−−→
AB = m + 2n
−−→
AD = m − 3n |m| = 5, |n| = 3 (
d
mn) =
π
6
a = p − 3q + r, b = 2p + q − 3r c = p + 2q + r
a = 3m + 5n, b = m − 2n, c = 2m + 7n |m| = 1, |n| =
3, (
d
mn) = 135
◦
[a, b]
2
+ (ab)
2
= a
2
b
2
[a, (b + λa)] = [(a + µb), b] = [a, b]
[a, b] + [b, c] + [c, a] = 0
[a, b], [b, c], [c, a]
[[a, b], c] = [a, [b, c]]
ax = α, bx = β, cx = γ.
a
1
= {2, 1, −1}, a
2
= {−3, 0, 2}, a
3
=
{5, 1, −2}
6. Äàíû âåêòîðû a = {3, 1, 2}, b = {2, 7, 4}, c = {1, 2, 1}. Íàéòè: 1) (a, b, c); 2) [[a, b], c]; 3) [a, [b, c]]. 7. Äâå òðîéêè âåêòîðîâ a1 , a2 , a3 è b1 , b2 , b3 íàçûâàþòñÿ âçàèì- íûìè, åñëè âåêòîðû ýòèõ òðîåê ñâÿçàíû ñîîòíîøåíèÿìè: ( 0, åñëè i 6= k ai bk = 1, åñëè i = k . Ïîëüçóÿñü îïåðàöèÿìè ñêàëÿðíîãî âåêòîðíîãî óìíîæåíèÿ, íàéòè âåê- òîðû b1 , b2 , b3 òðîéêè, âçàèìíîé òðîéêå âåêòîðîâ a1 , a2 , a3 . 8. Âû÷èñëèòü ïëîùàäü ïàðàëëåëîãðàììà, ïîñòðîåííîãî íà âåêòî- −−→ −−→ mn) = π6 . ðàõ AB = m + 2n è AD = m − 3n, ãäå |m| = 5, |n| = 3 è (d 9. Âû÷èñëèòü îáúåì ïàðàëëåïèïåäà, ïîñòðîåííîãî íà âåêòîðàõ: 1) a = p − 3q + r, b = 2p + q − 3r è c = p + 2q + r, ãäå p, q, è r âçàèìíî ïåðïåíäèêóëÿðíûå îðòû; 2) a = 3m + 5n, b = m − 2n, c = 2m + 7n, ãäå |m| = 1, |n| = mn) = 135◦ . 3, (d 10. Ïîêàçàòü, ÷òî [a, b]2 + (ab)2 = a2 b2 . 11. Ïîêàçàòü, ÷òî [a, (b + λa)] = [(a + µb), b] = [a, b]. 12. Ïîêàçàòü, ÷òî åñëè [a, b] + [b, c] + [c, a] = 0, òî âåêòîðû a, b è c êîìïëàíàðíû. 13. Ïîêàçàòü, ÷òî åñëè âåêòîðû [a, b], [b, c], [c, a] êîìïëàíàðíû, òî îíè êîëëèíåàðíû. 14. Ïðè êàêèõ óñëîâèÿõ [[a, b], c] = [a, [b, c]]? 15. Äàíû òðè íåêîìïëàíàðíûõ âåêòîðà a, b è c. Íàéòè âåêòîð x, óäîâëåòâîðÿþùèé ñèñòåìå óðàâíåíèé ax = α, bx = β, cx = γ. 16. Äëÿ òðîéêè âåêòîðîâ a1 = {2, 1, −1}, a2 = {−3, 0, 2}, a3 = {5, 1, −2} íàéòè âçàèìíóþ òðîéêó. 6
Страницы
- « первая
- ‹ предыдущая
- …
- 4
- 5
- 6
- 7
- 8
- …
- следующая ›
- последняя »