Методы факторизации натуральных чисел. Ишмухаметов Ш.Т. - 192 стр.

UptoLike

Составители: 

Список литературы 193
[12] Briggs M. An Introduction to the General Number Field Sieve / M. Briggs.–
Master’s Thesis, Virginia Polytechnic Institute and State University, Blacks-
burg, Virginia, 1998, p. 1–84.
[13] Buhler J.P. Factoring integers with the number field sieve / J. P. Buhler,
H. W. Lenstra, C. Pomerance.– in The Developement of the Number Field
Sieve, Springer–Verlag, Berlin, Germany, 1993, p. 50–94.
[14] Buhler J. Algorithmic Number Theory: Proc. ANTS-III / J.P. Buhler(ed.).–
Portland, OR, v.1423, Lect.Not.Comp.Sci. Springer–Verlag, 1998, 640 p.
[15] Cavallar S. Factorization of 512-bit RSA-modulus / S. Cavallar, W.M. Lioen,
H.J.te Riele, B. Dodson, A.K. Lenstra, P.L. Montgomery, B. Murphy et al.–
CWI Report MAS-R0007, February 2000, 18 p.
[16] Coblitz N. The state of elliptic cryptography / N.Coblitz, A.Menezes,
S.Vanstone.– Design, Codes and Cryptography, 19, Kluwer Publ. 2000, p.
103–123.
[17] Cohen H. A course in computational algebraic number theory / H. Cohen.–
Springer–Verlag, Berlin, 1993, 545 p.
[18] Coppersmith D. Fast evaluation of discrete logarithms in fields of charac-
teristic two/ D. Coppersmith.– IEEE Trans Inform. Theory, 1984, v.30(4),
p. 587–594.
[19] Coppersmith D. Solving homogeneous linear equations over GF (2) via block
Wiedemann algorithm / D. Coppersmith.– Math. Comp. 1994, v.62, p. 333–
350
[20] Couveignes J.M. Computing a square root for the number field sieve / Jean
Marc Couveignes.– in [33], p. 95–102
[21] Crandall R. The prime numbers: a computational perspertive / R. Crandall,
C. Pomerance.– sec.ed. Springer–Verlag, Berlin, 2005, 604 p.
Список литературы                                                            193

[12] Briggs M. An Introduction to the General Number Field Sieve / M. Briggs.–
    Master’s Thesis, Virginia Polytechnic Institute and State University, Blacks-
    burg, Virginia, 1998, p. 1–84.

[13] Buhler J.P. Factoring integers with the number field sieve / J. P. Buhler,
    H. W. Lenstra, C. Pomerance.– in The Developement of the Number Field
    Sieve, Springer–Verlag, Berlin, Germany, 1993, p. 50–94.

[14] Buhler J. Algorithmic Number Theory: Proc. ANTS-III / J.P. Buhler(ed.).–
    Portland, OR, v.1423, Lect.Not.Comp.Sci. Springer–Verlag, 1998, 640 p.

[15] Cavallar S. Factorization of 512-bit RSA-modulus / S. Cavallar, W.M. Lioen,
    H.J.te Riele, B. Dodson, A.K. Lenstra, P.L. Montgomery, B. Murphy et al.–
    CWI Report MAS-R0007, February 2000, 18 p.

[16] Coblitz N. The state of elliptic cryptography / N.Coblitz, A.Menezes,
    S.Vanstone.– Design, Codes and Cryptography, 19, Kluwer Publ. 2000, p.
    103–123.

[17] Cohen H. A course in computational algebraic number theory / H. Cohen.–
    Springer–Verlag, Berlin, 1993, 545 p.

[18] Coppersmith D. Fast evaluation of discrete logarithms in fields of charac-
    teristic two/ D. Coppersmith.– IEEE Trans Inform. Theory, 1984, v.30(4),
    p. 587–594.

[19] Coppersmith D. Solving homogeneous linear equations over GF (2) via block
    Wiedemann algorithm / D. Coppersmith.– Math. Comp. 1994, v.62, p. 333–
    350

[20] Couveignes J.M. Computing a square root for the number field sieve / Jean
    Marc Couveignes.– in [33], p. 95–102

[21] Crandall R. The prime numbers: a computational perspertive / R. Crandall,
    C. Pomerance.– sec.ed. Springer–Verlag, Berlin, 2005, 604 p.